Predictors of Mucositis in Oropharyngeal and Oral Cavity Cancer in patients treated with volumetric modulated radiation treatment: a Dose-Volume Analysis

Rosario Mazzola, MD

Radiation Oncology Department
Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy
Chair: Filippo Alongi, MD
In 40-80% of patients undergoing radiotherapy and/or chemotherapy for head and neck cancer, mucositis affects quality of life and compliance to treatment.

Factors related to RT:*

- Site of disease (especially Oral Cavity and Oropharynx)
- Treated volume
- Total dose and Fractionation
- Overall treatment time
- Chemotherapy

Trotti A et al. Radiother Oncol, 2003
In the era of dose painting IMRT, it becomes crucial to spare healthy structures to improve the patient’s QoL.
Background

MUCOSITIS VERSUS TUMOR CONTROL: THE THERAPEUTIC INDEX OF ADDING CHEMOTHERAPY TO IRRADIATION OF HEAD AND NECK CANCER

Irwin H. Lee, M.D., Ph.D., and Avraham Eisbruch, M.D.
Department of Radiation Oncology, University of Michigan, Ann Arbor, MI

CONCLUSIONS

We estimate that the addition of concurrent chemotherapy to radiation for HNSCC increases the BED for mucositis by 8 Gy_{10}, corresponding to three or four additional 2-Gy fractions. This estimate is strongly dependent on the assumed relationship between BED and mucositis, but within the range
The purpose of the present study was to analyze **Predictors of Acute Mucositis** in oropharyngeal and oral cavity cancers after VMAT +/- Chemotherapy

Study Design

50 pts were selected according to Inclusion Criteria:

1) **Age >18 years**

2) **Histologically proven carcinoma of the oropharynx and oral cavity**

3) **No dysphagia prior of RT**

4) **Radical and adjuvant treatment with VMAT (RapidArc - Varian Medical System-Palo Alto - CA)**
Patients and Treatment

<table>
<thead>
<tr>
<th>Factors</th>
<th>%</th>
<th>No. Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site of disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Oropharynx</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>T-stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>T2</td>
<td>34</td>
<td>17</td>
</tr>
<tr>
<td>T3</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>T4</td>
<td>38</td>
<td>19</td>
</tr>
<tr>
<td>Neck nodes positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>Unilateral</td>
<td>26</td>
<td>13</td>
</tr>
<tr>
<td>Bilateral</td>
<td>56</td>
<td>28</td>
</tr>
</tbody>
</table>

Radical setting:
- 70 Gy (33-35 fr) PTV(T)
- 59.94 - 63 Gy PTV(HR)
- 54.45 - 58.1 Gy PTV(LR)

Postoperative setting:
- 60 Gy Surgical Bed
- 54 Gy Nodes

Cisplatin 100 mg/m2 q21:
- ECOG – PS 0-1
- Age ≤ 70 y
- Locally advanced

Cisplatin 30 mg/m2 qw:
- ECOG - PS 2
- Age ≤ 70 y
- Locally advanced
Methods

Limits

• **Superiorly**: Hard Palate
• **Inferiorly**: Cricoid Cartilage
 • **Anteriorly**: Buccal Mucosa around the teeth
 • **Posteriorly**: The posterior pharyngeal wall

Oral Mucosa minus target PTVs
Mucositis Evaluation

1) EORTC/RTOG radiation morbidity score system
2) Weekly transoral inspection of the oral cavity and the visualized oropharynx
3) No endoscopy to score the degree of mucositis
4) Observer-assessed dysphagia was used as a surrogate for pharyngeal mucositis

Observer-assessed acute swallowing symptoms (such as burning, dysphagia, and pain) were a surrogate of pharyngeal mucositis extension*

*Bhide S.A. et al. 2010
Results

New proposed Oral Mucosa dose constraints Predictors of Mucositis ≥ G2 (RTOG/EORTC)

Results

Risk of grade ≥ 2 Mucositis according to EORTC/RTOG scale after Oral Mucosa Re-contouring

<table>
<thead>
<tr>
<th>Variable</th>
<th>P-value</th>
<th>(95% CI)</th>
<th>Odds Ratio</th>
<th>% Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concomitant Chemotherapy</td>
<td>0.006</td>
<td>0.1 - 1.2</td>
<td>5</td>
<td>50 %</td>
</tr>
<tr>
<td>Total OM:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D_{\text{mean}} \geq 50$ and $D_{\text{max}} \geq 65$</td>
<td>0.02 - 0.04</td>
<td>0.1 - 1.3</td>
<td>3.75</td>
<td>38 - 40%</td>
</tr>
<tr>
<td>Ratio total OM/OM out of PTVs:</td>
<td>0.03</td>
<td>0.8 - 1.8</td>
<td>2.6</td>
<td>35%</td>
</tr>
<tr>
<td>≥ 2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OM out of PTVs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{45} > 40$, $V_{50} > 30$, $V_{55} > 20$</td>
<td>0.04 - 0.009 - 0.003</td>
<td>0.5 - 2.3</td>
<td>4.85</td>
<td>8 - 22%</td>
</tr>
</tbody>
</table>

Abbreviations: OM=Oral Mucosa; CI=confidence interval; PTVs=planning target volumes; D_{mean}=mean dose; D_{max}=maximum dose; V_{45}=volume % of oral mucosa exposed to at least 45 Gy; V_{50}=volume % of oral mucosa exposed to at least 50 Gy; V_{55}=volume % of oral mucosa exposed to at least 55 Gy
Conclusions

New Constraints were found, useful for clinical practice

The parameters analyzed were used to develop a multivariate Model Predicting Moderate-Severe Mucositis

It is necessary to validate clinical application in prospective analyses

THANKS FOR ATTENTION!