The development of Radiobiology in Italy: critical points

- Controlled clinical trials are increasingly promoted by Pharmaceutical Industry (sponsored trials).
- The main investigator is often a Medical Oncologist (not interested in radiobiology).
- Few experimental studies are planned to investigate in the lab the interaction between new therapy and radiation.
- There should be a strong need for the selection of tumors which must be investigated.
- Pharmaceutical Industry should promote also basic research in the field of radiobiology.

Potential investigations

- **✓** In vivo studies: murine tumors, human xenografts
- ✓ In vivo studies: cell kinetics
- ✓In vitro studies: spheroids, mono-layers
- **✓** Reverse translational research (from bedside to bench)
- ✓ Mathematical models to use for the choice of fractionation and the optimization of treatment planning

Gruppo di Ricerca in Radiobiologia-GRR

- a livello inter-dipartimentale (intra-istituzionale)
- a livello inter-istituzionale (Università, IRCCS, INFN, Asl, Enti privati)

GRR

- Laboratory-based Research:
 ricercatore sperimentale (biologo, anatomopatologo, biofisico, clinical investigator etc)
- Image-guided Research: radiodiagnosta,medico-nucleare, fisico, chimico
- Clinical Investigation:
 radioterapista, oncologo medico,
 ematologo, chirurgo, fisico

Problematiche

- Finanziamento: progetti finalizzati nazionali (Ministero, CNR, AIRC) e internazionali (Biomed)
- Sponsorizzazione di Enti privati (evitare conflitto di interesse).

"In vivo" investigation: constraints

- Ethical problems (studies in Humans and Animals)
- Difficulties to obtain many specimens for research after first biopsy for diagnosis
- Logistical aspects
- Need for a strong correlation between biological parameter and clinical outcome

"In vitro" investigation: constraints

- Difficulty in the assessment of the actual role of a biological parameter;
- The pre-treatment value may change during the radiotherapy course;
- Intra and inter-tumoral heterogeneity;
- Lab analysis may be not standarized;
- The biological bank may be a solution in controlled clinical trials.

Potential prognostic factors and predictors of response to radiotherapy in HN-SCC (spontaneous investigations)

- Intrinsic radiosensibility SF2 Gy
- Cell kinetics (LI% Tpot, cyclin-D1, Ki 67%, others)
- Hypoxic measurement (pimonidazole index, pO2 measurement, osteopontin)
- Molecular genetics (p53, p16, p21, p 27)
- Multiple genetic aberration (LOH)
- Drug-DNA adducts and many others.....
- EGF-R?

None of the above has entered clinical practice to improve prognostic index and to select patients who may benefit from chemo-radiotherapy or altered fractionated radiotherapy

Forward Translational Research (Genoa- 2000-2008)

- To investigate the in vivo Intra-Bone —Transplant (IBT) feasibility after Total Body Irradiation (future impact on BMT in clinics).
- To evaluate in vitro the modulation of the radiosensitivity of a radioresistant human SCC from HN embedded in collagen gels (stromal influence) (future impact on radiotherapy for aggressive SCC-HN).

Total Body Irradiation for Intra-Bone Marrow -Trasplant

- Bone Marrow Transplantation → powerful strategy for the cure of congenital immunodeficiency, hematological and metabolic disorders.
- Important subject to solve: GvHD
- Goal: injection of donor bone marrow cells directly into the bone marrow cavity induces persistent donor-specific tolerance in mice even if radiation dose are reduced to sublethal levels

Rationale

- To explore IBM-BMT in order to:
- To shift lethal TBI dose to sublethal dose
- To reduce GvHD by giving less donor cells
- To avoid heavy late radiation-induced toxicity
- To deliver BMT also in older patients

Intravenous marrow infusion

Fig. 5. Conventional BMT for allogeneic BMT. Conventional BMT is carried out using an aspiration method, followed by the intravenous injection of BMCs (IV-BMT).

STEM CELLS

Translational and Clinical Research

Prevention of Graft-Versus-Host Disease by Intra-Bone Marrow Injection of Donor T Cells

Junichi Fukui, ^{a,b} Muneo Inaba, ^{a,c} Yusuke Ueda, ^{a,d} Takashi Miyake, ^{a,b} Naoki Hosaka, ^{a,c} A-Hon Kwon, ^b Yutaku Sakaguchi, ^{a,e} Masanobu Tsuda, ^{a,f} Mariko Omae, ^{a,g} Yasuo Kamiyama, ^b Susumu Ikehara ^{a,c}

EXPERIMENTAL HEMATOLOGY

Experimental Hematology 31 (2003) 1142-1146

A novel strategy for allogeneic stem cell transplantation: perfusion method plus intra-bone marrow injection of stem cells

Susumu Ikehara

Kansai Medical University, Osaka, Japan

Intra-Bone Marrow-BMT

S. Ikehara / Journal of Autoimmunity 30 (2008) 108-115

112

Fig. 6. A new BMT method for allogeneic BMT. The new method consists of PM + IBM-BMT.

Experimental Hematology 32 (2004) 782-787

Intra-bone marrow injection of bone marrow and cord blood cells: An alternative way of transplantation associated with a higher seeding efficiency

Sandra Castello^a, Marina Podestà^a, Vincenzo G. Menditto^a,
Adalberto Ibatici^a, Anna Pitto^a, Osvaldo Figari^a, Daniele Scarpati^b,
Lorenzo Magrassi^c, Andrea Bacigalupo^a, Giovanna Piaggio^a, and Francesco Frassoni^a

^aCentro Cellule Staminali e Terapia Cellulare e ^bServizio di Radioterapia, Ospedale San Martino, Genova, Italy; ^cNeurochirurgia, Dipartimento di Chirurgia, Università di Pavia, IRCCS Policlinico S., Pavia, Italy

(Received 13 June 2003; revised 17 May 2004; accepted 18 May 2004)

Results

- → Intra-bone transplantation (IBT) is associated with a seeding efficiency 15 times greater than intra-venous transplantation.
- IBT may be useful when a limited number of donor progenitors are available such as cord blood cells
- With IBT the dose of TBI may be reduced.

Conditioning regimen for bone marrow transplant

Stem Cell Killing

Conditioning regimens for stem cell transplantation

Immunosuppressive Effect

Ongoing investigation

- To evaluate the distribution of in vivo hematopoietic cells injected either i.v. or intrabone in Lewis mice submitted to irradiation
- Day 2: Total Mouse Irradiation (range 6-9 Gy)
- Day 0: Transplant (i.v. or intra-bone) with radiotracer Tc99.
- Analysis of distribution by gamma-camera.

The "in vitro collagen gel" model

Collagen gels are found wide applications in biology as a in vitro scaffold for growing a viariety of cell types reproducing the 3-D environment found in vivo.

As compared to monolayer (collagen fibers) in the 3-D spatial volume (spheroid) cell metabolic activity is limited. This model is similar to in vivo model with respect to radiosensitivity.

Figure 1 Schematic representation of the cell culture models designed to study the interaction of different cell types in collagen gel. The aim of the mixed-cell model is to evaluate the effects of direct cell-cell contact, including physical contact and autocrine stimuli. That of the two-gel model is to evaluate the effects of paracrine factors, given that each cell type is cultured in separate gels nurtured by the same culture medium.

Int. J. Cancer: 85, 667-673 (2000)

© 2000 Wiley-Liss, Inc.

Publication of the International Union Against Cancer

CO-CULTURE WITH HUMAN FIBROBLASTS INCREASES THE RADIOSENSITIVITY OF MCF-7 MAMMARY CARCINOMA CELLS IN COLLAGEN GELS

Lorenzo Rossi1*, Daniele Reverberi2, Giorgia Podestá2, Sonia Lastraioli2 and Renzo Corvó3

Int. J. Radiation Oncology Biol. Phys., Vol. 53, No. 5, pp. 1319-1327, 2002

Copyright © 2002 Elsevier Science Inc.

Printed in the USA. All rights reserved

0360-3016/02/\$-see front matter

PII S0360-3016(02)02865-1

BIOLOGY CONTRIBUTION

RETINOIC ACID MODULATES THE RADIOSENSITIVITY OF HEAD-AND-NECK SQUAMOUS CARCINOMA CELLS GROWN IN COLLAGEN GEL

Lorenzo Rossi, Ph.D.,*† and Renzo Corvò, M.D.‡

*Laboratory of Comparative Oncology and [†]Division of Radiotherapy-Istituto Nazionale per la Ricerca sul Cancro; and [†]Department of Oncology, Genetics, and Biology—University of Genoa, Genoa, Italy

¹Department of Oncology, Genetics and Biology, University of Genoa, Genoa, Italy

²Laboratory of Comparative Oncology, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy

³Department of Radiology, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy

ORAL ONCOLOGY

www.elsevier.com/locate/oraloncology

Endothelial cells increase the radiosensitivity of oropharyngeal squamous carcinoma cells in collagen gel

Lorenzo Rossia,b,*, Francesco Boccardob,c, Renzo Corvòd

Figure 1 Schematic representation of the cell culture models designed to study the interaction of different cell types in collagen gel. The aim of the mixed-cell model is to evaluate the effects of direct cell-cell contact, including physical contact and autocrine stimuli. That of the two-gel model is to evaluate the effects of paracrine factors, given that each cell type is cultured in separate gels nurtured by the same culture medium.

Influence of stromal factors on radiosensitivity of SCC

- Human fibroblasts
- Contracted collagen gels
- Retinoid acid and other paracrine factors
- Stromal endothelial cells

may

increase (or modulate) radiosensitivity