Definition of the clinical volumes in gliomas

Silvia Scoccianti, Firenze

<complex-block>

CTV definition in gliomas. Practical considerations

Use of advanced imaging for treatment planning purposes

Something new about OARs

Definition of the clinical volumes in GLIOBLASTOMA

patterns of relapse

Ogura et al. Radiation Oncology 2013, 8:97

Author	V	Newsley	Transforment	Dose	Margin		Recurre	ence sites	e sites	
	Year	Number	Treatment	(Gy)	(cm)	Central	In-field	Marginal	Distan 5% 8% 3% 4% 22% 13% 14% 2%	
Nakagawa [7]	1998	38	3DCRT + ACNU	60-80	0–2	90% [†]			5%	
				90	0–2	46% ^{††}			8%	
Lee [5]	1999	36	3DCRT	70–80	1.5	72%	17%	8%	3%	
Chan [6]	2002	34	3DCRT	90	0.5	78%	13%	9%		
Chang [3]	2007	48	$3DCRT \pm chemo^*$	60	1	83%	6%	6%	4%	
Brandes [16]	2009	95	3DCRT + TMZ	60	2–3	72%		6%	22%	
Milano [15]	2010	54	3DCRT + TMZ	60	2-2.5	92% [§]		15%	13%	
Minniti [14]	2010	105	3DCRT + TMZ	60	1–2	79%	6%	6%	14%	
McDonald [13]	2011	41	(IMRT or 3DCRT) ±TMZ	60	0.8	78%	15%	5%	2%	
This study	2012	58	3DCRT ± (ACNU or TMZ)	60	1.5–2	69%	16%	12%	3%	

Table 5 Comparison of published data with regard to patterns of failure in patients with glioblastoma

*21/48 patients received adjuvant or concurrent chemotherapy (carmustine, procarbazine, and temozolomide).

†5% were subependymal recurrences (did not apply to our classification method of recurrence sites).

††46% were subependymal recurrences (did not apply to our classification method of recurrence sites).

§Insufficient data to apply to our classification method of recurrence sites.

Uehara et al. Radiation Oncology 2012, 7:104

a)Preoperative or Postoperative MRI? b)Inclusion of edema

PREOPERATIVE scan		Contrast enhancing lesion + margins
ehnancing lesion Edema		Preoperative edema + margins
POSTOPERATIVE scan	0	Surgical bed + any residual lesion + margins
Edema		Postoperative edema + margins

Inclusion of edema: to be or not to be?

EVALUATION OF PERITUMORAL EDEMA IN THE DELINEATION OF RADIOTHERAPY CLINICAL TARGET VOLUMES FOR GLIOBLASTOMA

ERIC L. CHANG, M.D., SERAP AKYUREK, M.D., TEDDE AVALOS, C.M.D., NEAL REBUENO, C.M.D., CHRIS SPICER, C.M.D., JOHN GARCIA, C.M.D., ROBIN FAMIGLIETTI, M.B.A., C.M.D., PAMELA K. ALLEN, PH.D., K. S. CLIFFORD CHAO, M.D., ANITA MAHAJAN, M.D., SHIAO Y. WOO, M.D., AND MOSHE H. MAOR, M.D.

Department of Radiation Oncology, The University of Texas, M. D. Anderson Cancer Center, Houston, TX

Preoperative	Theoretical plans			Real plans			
scan	Up to 46 Gy		Preoperative edema + 2 cm	Up to 50 Gy		Surgical bed + any contrast enhancing residual tumor + 2 cm	
Postoperative scan	Boost 46 -> 60 Gy		Preoperative contrast ehnancing lesion + 2.5 cm	Boost 50 -> 60 Gy	0	Surgical bed + any contrast enhancing residual tumor	

Int. J. Radiation Oncology Biol. Phys., Vol. 68, No. 1, pp. 144-150, 2007

Most failures (90%) occurred with a central or in-field recurrence pattern.

	Theoretical plans	Real plans
Volume of brain irradiated in pts with large volumes of edema (>75cc)	p<0	.001

	Theoretical plans	Real plans
Failure in central and in-field localization	p=	NS

Despite the coverage of edema, three marginal and two distant recurrences failed to be covered by the theoretical 46-Gy isodose volume

Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide

Giuseppe Minniti^{a,b,*}, Dante Amelio^c, Maurizio Amichetti^c, Maurizio Salvati^b, Roberta Muni^a, Alessandro Bozzao^d, Gaetano Lanzetta^b, Stefania Scarpino^e, Antonella Arcella^b, Riccardo Maurizi Enrici^a

	Theore		tical plans		Real plans		
Postoperative scan Edema Surgical bed	Up to 46 Gy (Postoperative edema + 2 cm	Up to 60 Gy		Surgical bed + any contrast enhancing residual tumor	
	Boost 46 -> 60 Gy	0	Surgical bed any contrast enhancing residual tumor + 2.5 cm			+ 2 cm	

Radiotherapy and Oncology 97 (2010) 377-381

	Theoretical plans	Real plans
Volume of brain irradiated with 46 and 60 Gy	p<0	.001

Analysis of tumor recurrences in 105 patients with GBM.

Recurrence volume within radiation field	S'Andrea _{plans}	RTOG _{plans}
Central	79	80
In-field	6	7
Marginal	6	4
Outside	14	14

EORTC criteria

EORTC Protocol CORE

Contemporary planning is based on POSTOPERATIVE IMAGING McDonald, IJROBP 2011

RTOG studies

Protocol		CTV up to 46 Gy	CTV boost
RTOG 9710 RTOG 8302 RTOG 8612 RTOG 9305	Rec IFN Hyperfract Iododeoxyuridine RS boost	Preoperative edema + 2 cm	Preoperative GTV + 2.5 cm
RTOG 0525 RTOG 0825 RTOG 0420	Dose intensive TMZ Bevacizumab Low dose TMZ + Irinotecan	Postoperative edema + 2 cm	Surgical bed + any contrast enhancing residual tumor + 2.5 cm
RTOG 9803	Dose escalation	Surgical bed + any contrast enhancing residual tumor + 1.5 cm	Surgical bed + any contrast enhancing residual tumor

The CTV margin may be reduced to 0.5 cm around natural barriers to tumor growth

Proximity to OARs

Proximity to OARs

	CTV1		CTV2	
MDACC, Chang 2007	Up to 50 Gy	Surgical bed + any contrast enhancing residual tumor + 2 cm	50-60 Gy	Surgical bed + any contrast enhancing residual tumor

Definition of the clinical volumes in LOW GRADE GLIOMAS

Radiotherapy and Oncology 103 (2012) 287–292

Quality assurance in the EORTC 22033–26033/CE5 phase III randomized trial for low grade glioma: The digital individual case review

Alysa Fairchild ^{a,b,*}, Damien C. Weber ^c, Raquel Bar-Deroma ^d, Akos Gulyban ^{a,e}, Paul A. Fenton ^{a,f}, Roger Stupp^g, Brigitta G. Baumert ^h

Target volume – GTV

Target volume – CTV

Region of high signal intensity on T2 or FLAIR–MRI corresponding to the hypodense area on CT, including any areas of CT enhancement; or operative cavity + any residual tumour GTV + 1–1.5 cm except at anatomic boundaries^a where 5 mm is sufficient

Reasons for volume deviations.

Volumes ($N = 57$)	CTV
Protocol compliant	30/57
Minor deviation	19/57 Crosses enotomic
	boundaries – 15/19
	Margin incorrect - 3/19
	Both – 1/19
Major deviation	8/57 No CTV 4/8
	Incorrect $-3/8$
	2 CTVs – 1/8

JOURNAL OF CLINICAL ONCOLOGY ORIGINAL REPORT

Randomized Trial of Radiation Therapy Plus Procarbazine, Lomustine, and Vincristine Chemotherapy for Supratentorial Adult Low-Grade Glioma: Initial Results of RTOG 9802

Edward G. Shaw, Meihua Wang, Stephen W. Coons, David G. Brachman, Jan C. Buckner, Keith J. Stelzer, Geoffrey R. Barger, Paul D. Brown, Mark R. Gilbert, and Minesh P. Mehta

GTV

Biopsy: any abnormality in T2 weighted images from the **preoperative** MRI scan

Surgical resection: resection cavity + any abnormality in T2 weighted images from the **postoperative** MRI scan

CTV= GTV plus a 2 cm margin.

JOURNAL OF CLINICAL ONCOLOGY

Phase II Trial of Conformal Radiation Therapy for Pediatric Low-Grade Glioma

n=78

Thomas E. Merchant, Larry E. Kun, Shengjie Wu, Xiaoping Xiong, Robert A. Sanford, and Frederick A. Boop

Author by Type				Event- or Pro		ogression-Fre	ree Survival (%)			
of Treatment	Year of Study	Treatment Regimen	No. of Patients	2-Year	3-Year	5-Year	8-Year	10-Year		
Chemotherapy										
Ater ²¹	2008	CV	137			35				
		TPCV	137			48				
Gnekow ²⁰	2004	CV	198			61				
Massimino ¹⁹	2002	CisVP	31		78					
Prados ¹⁸	1997	TPCV	42	50						
Packer ¹⁷	1997	CV	78		68					
Radiation therapy										
Marcus ²⁷	2005	52.2 Gy	50			82	65			
Saran ²⁶	2002	50-55 Gy	14		87					
Grabenbauer ²⁹	2000	45-60 Gy	25					69		
Erkal ²⁸	1997	50 Gy	30			82		77		
Merchant	2008	54 Gv	78			85		74		

C, carboplatin; V, vincristine; T, thioguanine; P, procarbazine; Cis, cisplatin; VP, etoposide.

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Late Effects of Conformal Radiation Therapy for Pediatric Patients With Low-Grade Glioma: Prospective Evaluation of Cognitive, Endocrine, and Hearing Deficits

Thomas E. Merchant, Heather M. Conklin, Shengjie Wu, Robert H. Lustig, and Xiaoping Xiong

	Table 1. Models of Cognitive	Effects After CRT for	Pediatric Low-Grade Glioma			
			Score*			
Evaluation	Least Two Measures	Baseline	Change per Month	Month 60	Pt	
Ω	55 🔴	98.9642	-0.0591	95.4182		
Math	55 🛛 🔵	96.9703	-0.0435	94.3603		
Reading	56	98.9448	-0.0989	93.0108	.0039	
Spelling	56 🛛 🔴	98.2341	-0.1434	89.6301	.0014	
Memory	53	47.5523	0.0164	48.5363		
Behavior problems‡	55	49.2340	-0.0556	45.8980	.0641	
Externalizing‡	58	43.9829	-0.0099	43.3889		
Internalizing‡	58	51.5753	-0.0550	48.2753	.0248	
Activities	55	43.2365	0.0031	43.4225		
School	53 🍼 🔴	41.8430	-0.0515	38.7530	.0479	
Socialization	56	44.5348	-0.0084	44.0308		
Communication	57 57	94.6115	-0.1308	86.7635	.0041	
Composite	57	94.4170	-0.1026	88.2610	.0433	
Daily living	57 57	94.0500	-0.0635	90.2400		
Socialization	57	98.7889	-0.0559	95.4349		
Visual auditory learning	30	92.2834	0.1768	102.8914	< .0001	

NOTE. Instruments for each evaluation are as follows: IQ, Bayley second edition; Wechsler Preschool and Primary Scale of Intelligence revised; Wechsler Intelligence Test for Children third edition or Wechsler Adult Intelligence Scale revised, as appropriate for age; math, reading, and spelling: Wechsler Individual Achievement Test; memory: California Verbal Learning Test: Child Version; behavior problems, externalizing, internalizing, activities, school, socialization: Child Behavior Checklist; communication composite, daily living, socialization: Vineland Adaptive Behavior Scale; and visual auditory learning: Woodcock Johnson revised, visual auditory learning subtest.

Abbreviations: CRT, conformal radiation therapy; IQ, intelligence quotient.

*Score = baseline + ([change per month] × time).

†P value for change per month.

‡Increasing scores represent worsening performance.

Five years after CRT, only the decline in spelling scores was clinically significant

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Late Effects of Conformal Radiation Therapy for Pediatric Patients With Low-Grade Glioma: Prospective Evaluation of Cognitive, Endocrine, and Hearing Deficits

Thomas E. Merchant, Heather M. Conklin, Shengjie Wu, Robert H. Lustig, and Xiaoping Xiong

Fig 1. Modeled intelligence quotient (IQ) scores after conformal radiation therapy (CRT) by age for pediatric low-grade glioma. Age is measured in years, and time is measured in months after the start of CRT.

Fig 2. Modeled intelligence quotient (IQ) scores after conformal radiation therapy (CRT) by age and supratentorial brain dose-volume intervals for pediatric low-grade glioma. Age is measured in years, and time is measured in months after CRT. The dose-volume intervals V_{0-30Gy} and $V_{30-60Gy}$ represent the percent volume of the supratentorial brain that received dose within the specified interval.

CHILDREN'S ONCOLOGY GROUP NCT00238264 trial

Radiation Therapy in Treating Young Patients With Gliomas

CTV= GTV plus a 0.5 cm margin

Intensity-Modulated Radiotherapy (IMRT) in Pediatric Low-Grade Glioma

Arnold C. Paulino, MD^{1,2}; Ali Mazloom, MD¹; Keita Terashima, MD²; Jack Su, MD²; Adekunle M. Adesina, MD, PhD³; M. Faith Okcu, MD, MPH²; Bin S. Teh, MD¹; and Murali Chintagumpala, MD²

Margins Around GTV

8y-PFS rate 78.2%

Margins 1 cm added to the GTV may not be necessary, because excellent local control was achieved by adding a 0.5-cm margin and by dose painting

CTV definition in gliomas. Practical considerations

Use of advanced imaging for treatment planning purposes

Something new about OARs

Role of PET in neurooncology

Differential diagnosis

Biopsy- guidance

Evaluation of tumor extent in radiotherapy planning

Differentiation between relapse and pseudoprogression

Differentiation between relapse and radionecrosis

Piroth, IJROBP 2011 Crippa, J Nucl Med Mol Imaging 2012 Gotz, Front Onc 2013 •¹¹C MET PET: ¹¹C-methionine PET Miwa, J Neurol Neuros Psych 2004 Grosu, IJROBP 2005 Mahasittiwat, IJROBP 2008 Lee, IJROBP 2009 Matsuo, IJROBP 2012

•¹⁸FET PET: ¹⁸F-fluoroethyltyrosine PET

Weber, Rad Onc 2009 Piroth, Rad Onc 2011 Niyazi, Rad Onc 2011 Piroth, Strahlen Onkol 2012 Rieken, Radioth Oncol 2013

•¹⁸F DOPA PET: ¹⁸F dihydroxi-fluorophenylalanine PET *Pafundi, Neuro-oncology 2013*

•¹¹C CHO PET: ¹¹C-choline PET Li, Nuclear Medicine and Biology 2012

PET in the definition of tumor extent in radiotherapy

Analysis of discrepancies between pre-radiotherapy volumes (MRI-volume vs PET-volume) Miwa, J Neurol NS Psych 2004 Mahasittiwat, IJROBP 2008 Lee, IJROBP 2009 Li, Nucl Med Bio 2012 Pafundi, NO, 2013 Rieken, Rad Onc 2013

Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy

Stefan Rieken^{a,*}, Daniel Habermehl^a, Frederik L. Giesel^b, Christoph Hoffmann^a, Ute Burger^a, Harald Rief^a, Thomas Welzel^a, Uwe Haberkorn^b, Jürgen Debus^a, Stephanie E. Combs^a

^a University Hospital of Heidelberg, Department of Radiation Oncology; ^bUniversity Hospital of Heidelberg, Department of Nuclear Medicine, Germany

		Planning	target volumes (PTV)	Volume [ml]	р
2012	44 1		PTV ^{MRT} (all)	36.48 (±34.32)	
2013	41 pts		PTV ^{MRT+PET} (all)	61.96 (±50.94)	0.12
			PTV ^{MRT} (I/II)	68.05 (±38.87)	
			PTV ^{MRT+PET} (I/II)	98.04 (±58.26)	0.18
Neuro-Oncology 15(8):1058–106	57, 2013.		PTV ^{MRT} (III/IV)	35.62 (±33.84)	
doi:10.1093/neuonc/not002 Advance Access publication Marcl	n 3, 2013	JRU-UNCULUGY	PTV ^{MRT+PET} (III/IV)	53.1 (±48.73)	0.04*
Dianau valida	tion of ¹⁸ E DODA DET	and	PTV ^{MRT} (initial RT)	44.51 (±35.36)	
biodistribution in gliomas for neurosurgical		and	PTV ^{MRT+PET T} (initial RT)	70.15 (±54.21)	0.02*
		lineation	PTV ^{MRT} (reirradiation)	23.86 (±26.83)	
results of a prospective pilot study		meanon	PTV ^{MRT+PET} (reirradiation)	47.34 (±28.14)	0.28

Deanna H. Pafundi, Nadia N. Laack, Ryan S. Youland, Ian F. Parney, Val J. Lowe, Caterina Giannini, Brad J. Kemp, Michael P. Grams, Jonathan M. Morris, Jason M. Hoover, Leland S. Hu, Jann N. Sarkaria, and Debra H. Brinkmann

2013

10 pts

Table 4. Concordant and discordant volume percentages of threshold HGG 18 F-DOPA PET (T/N > 2.0) relative to the T1-CE gold standard and T2/FLAIR gold standard volumes

Patient	% Threshold T/N > 2.0 HGG PET Volume Outside T1-CE Volume	% Threshold T/N > 2.0 HGG PET Volume Inside T1-CE Volume	% T2/FLAIR Volume Outside Threshold T/N > 2.0 HGG PET Volume
FDOPA01 ^a	100.0	0.0	99.9
FDOPA02 ^a	100.0	0.0	96.1
FDOPA03	81.0	19.0	70.6
FDOPA04	35.8	64.2	87.5
FDOPA05 ^a	100.0	0.0	91.7
FDOPA06	41.4	58.6	84.3
FDOPA07	63.2	36.8	84.5
FDOPA08 ^b	N/A	N/A	N/A
FDOPA09	15.1	84.9	83.6
FDOPA10 ^{a,b,c}	N/A	N/A	N/A

^aNo T1-CE.

^bNo high-grade disease per PET threshold.

^cNo PET uptake.

PET in the definition of tumor extent in radiotherapy

Use of PET for target definition

Weber, Rad Onc 2009 Piroth, Rad Onc 2011 Nizayi, Rad Onc 2011 Piroth, Strahlen Onkol 2012

Radiotherapy and Oncology 93 (2009) 586-592

Recurrence pattern after [(18)F]Fluoroethyltyrosine-Positron Emission Tomography-guided radiotherapy for high-grade glioma: A prospective study

Damien C. Weber ^{a,c,*}, Nathalie Casanova ^a, Thomas Zilli ^a, Franz Buchegger ^b, Michel Rouzaud ^a, Philippe Nouet ^a, Hansjorg Vees ^a, Osman Ratib ^{b,c}, Giovanna Dipasquale ^a, Raymond Miralbell ^{a,c}

^a Department of Radiation Oncology; and ^b Department of Nuclear Medicine, Geneva University Hospital, Switzerland; ^c Department of Radiation Oncology, University of Geneva, Switzerland

n=41 CTV = (GTV U BTV) + 1,5 cm

MRI-based PTVs miss 17% of FET-PET/CT-based GTVs

Table 2

Location and dosimetric characteristics of recurrences after chemo-radiotherapy using composite volumes (GTV U BTV; see text).

Patient #	* RTV (cm ³)	RTV within the prescription 95% isodose surface (%)	RTV outside the prescription 95% isodose surface (cm ³)	Type of recurrence
1	45.3	100.0	0.00	Central
2	20.2	96.6	0.69	Central
3	20.7	95.0	1.02	Central
4	37.8	100.0	0.00	Central
5	18.2	100.0	0.00	Central
6	86.5	76.8	20.04	In-field
7	105.7	98.9	1.14	Central
8	8.5	100.0	0.00	Central
9	47.8	96.8	1.51	Central
10	3.9	98.3	0.07	Central

Abbreviations: GTV, gross tumour volume; BTV, biological tumour volume; RTV, recurrence tumour volume.

Radiotherapy and Oncology 99 (2011) 218-224

Prognostic impact of postoperative, pre-irradiation ¹⁸F-fluoroethyl-L-tyrosine uptake in glioblastoma patients treated with radiochemotherapy

Marc D. Piroth^{a,e,*}, Richard Holy^{a,e}, Michael Pinkawa^{a,e}, Gabriele Stoffels^{b,e}, Hans J. Kaiser^c, Norbert Galldiks^{b,d}, Hans Herzog^b, Heinz H. Coenen^{b,e}, Michael J. Eble^{a,e}, Karl J. Langen^{b,e}

^a Department of Radiation Oncology, RWTH Aachen University Hospital, Germany; ^b Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Germany; ^c Department of Nuclear Medicine, RWTH Aachen University Hospital, Germany; ^d Department of Neurology, University Hospital Cologne, Germany; ^e Jülich-Aachen Research Alliance (JARA) – Section JARA-Brain, Forschungszentrum Jülich, Germany

n=44 n=19 Focal dose escalation: SIB-IMRT 72 Gy in 30 fractions on GTV_{PET} Multivariate analysis (Cox proportional hazards model).

	OS*		DFS [†]	
	Hazard ratio (95% CI)	p-Value	Hazard ratio (95% CI)	p-Value
RPA score [‡] III/IV	0.28 (0.08, 0.07)	0.04	n c ⁸	0.6
vs. v vs. VI	0.28 (0.08-0.97)	0.04	n.s. ^{&}	0.6
Extent of resection [§] Gross total vs. Partial vs. Biopsy	n.s. ^{&} n.s. ^{&}	0.5	n.s. ^{&} n.s. ^{&}	0.1
$Vol_{TBR} \ge 1.6^{ }$ $\ge 25 \text{ ml vs. } <25 \text{ ml}$	6.46 (2.5–16.7)	<0.001	5.65 (2.17-14.7)	<0.001
$ Vol_{TBR} \geqslant 2.0^{\P} \\ \geqslant 10 \text{ ml vs. } < 10 \text{ ml} $	6.46 (2.5–16.7)	<0.001	5.65 (2.17-14.7)	<0.001
MR Gd-volume [#] <10 ml ≥10 ml	n.s. ^{&} n.s. ^{&}	0.2	n.s. ^{&} n.s. ^{&}	0.4

Strahlentherapie und Onkologie Journal of Radiation Oncology, Biology, Physics © Urban & Vogel 2012

Integrated boost IMRT with FET-PETadapted local dose escalation in glioblastomas

Results of a prospective phase II study

M.D. Piroth^{1,5}, M. Pinkawa^{1,5}, R. Holy^{1,5}, J. Klotz^{1,5}, S. Schaar^{1,5}, G. Stoffels^{2,5}, N. Galldiks^{2,4}, H.H. Coenen^{2,5}, H.J. Kaiser³, K.J. Langen^{2,5} and M.J. Eble^{1,5}

n=22 SIB-IMRT 60 Gy in 30 fractions on PTV_{MRI} 72 Gy in 30 fractions on PTV_{PET}

No significative changes in neurocognitive performance and in quality of life No increased toxicity

No survival benefit

Radiotherapy and Oncology 99 (2011) 44-48

FET-PET for malignant glioma treatment planning

n=17

 $CTV_{morph} = GTV+2 cm$

Maximilian Niyazi^a, Julia Geisler^b, Axel Siefert^a, Silke Birgit Schwarz^a, Ute Ganswindt^a, Sylvia Garny^a, Oliver Schnell^c, Bogdana Suchorska^c, Friedrich-Wilhelm Kreth^c, Jörg-Christian Tonn^c, Peter Bartenstein^b, Christian la Fougère^b, Claus Belka^{a,*}

^a Department of Radiation Oncology; ^b Department of Nuclear Medicine; and ^c Department of Neurosurgery, Ludwig-Maximilians-University Munich, München, Germany

Tumour volumes. Measurement of different tumour volumes in 17 glioblastoma patients.

$CTV_{biol} = BTV+2 CM$ $CTV_{final} = CTV_{morph}$	CTV _{biol}
Conformity Index CTV _{morph} ∩CTV _{biol}	$x = 0.73 \pm 0.03$
CTV _{morph} ∪ CTV _{biol}	

BTV [cc]	BTV + 2 [cc]	GTV [cc]	CTV [cc]
30.9	240.3	26.8	221.6
80.7	308.5	64	249.3
14.9	131.2	12.5	122.6
50.9	303.7	39.5	253.9
6.3	99.8	6	89.9
112.2	327.0	92.2	333
29.7	160.5	27.8	224.5
43.9	239.1	50.9	291.5
41.2	167.1	7.4	191.7
77.9	285.4	50.8	294.9
24.4	183.3	23.6	173.8
69.0	275.5	34.1	201.5
130.1	553.2	139.5	540.9
54.0	290.4	19	180.2
31.8	186.9	20.4	150.9
18.2	153.6	103	342.4
121.4	411.9	99.4	366.8
Median 43.9	Median 240.3	Median 34.1	Median 224.5

Data on tumor progression n=12

GTV _{MRI}		GTV _{PET}	
Inside	6	Inside	6
Marginal	3	Marginal	4
Outside	3	Outside	2

Role of advanced MRI in neurooncology

Differential diagnosis

Biopsy- guidance

Preoperative planning

Evaluation of tumor extent in radiotherapy planning

Differentiation between relapse and pseudoprogression

Differentiation between relapse and radionecrosis

•MR spectroscopy (MRSI)

Pirzkall, IJROBP 2004 Park , IJROBP2007 Narayana, BJR 2007 Einstein, IJROBP 2012

3D MRSI FOR RESECTED HIGH-GRADE GLIOMAS BEFORE RT: TUMOR EXTENT ACCORDING TO METABOLIC ACTIVITY IN RELATION TO MRI

Andrea Pirzkall, M.D.,* Xiaojuan Li, M.S.,[†] Joonmi Oh, Ph.D.,[†] Susan Chang, M.D.,[‡] Mitchel S. Berger, M.D.,[‡] David A. Larson, M.D., Ph.D.,*[‡] Lynn J. Verhey, Ph.D.,* William P. Dillon, M.D.,[†] and Sarah J. Nelson, Dr.rer.nat.[†]

30 pts

2004

Patterns of Recurrence Analysis in newly diagnosed GBM

following 3D Conformal Radiation Therapy with respect to Pre-RT

MR Spectroscopic Findings

Ilwoo Park, BS^{1,2}, Gregory Tamai, BS¹, Michael C. Lee, Ph.D.¹, Cynthia F. Chuang, Ph.D.³, Susan M. Chang, M.D.⁴, Mitchel S. Berger, M.D.⁴, Sarah J. Nelson, Ph.D.^{1,2}, and Andrea Pirzkall, M.D.^{1,3,4} 2007 9 relapses in 23 pts Correspondence of areas of new contrast enhancement with initial MRSI abnormalities in 8 of 10 non–contrastenhancing patients

New or increased contrastenhancement was within the pre-RT MRSI lesion in 89 % (8/9) of patients

The British Journal of Radiology, 80 (2007), 347–354

Use of MR spectroscopy and functional imaging in the treatment planning of gliomas

¹A NARAYANA, MD, ²J CHANG, PhD, ²S THAKUR, PhD, ^{2,3}W HUANG, PhD, ³S KARIMI, MD, ^{2,3}B HOU, PhD, ²A KOWALSKI, Ms, ²G PERERA, Ms, ³A HOLODNY, MD and ^{4,5}P H GUTIN, MD

Departments of ¹Radiation Oncology, ²Medical Physics, ³Radiology and ⁴Surgery, Memorial Sloan-Kettering Cancer Center and ⁵Department of Neuro-Surgery, Weill Medical College of Cornell University, 1275 York Avenue, New York, NY 10021, USA All the patients failed in MRSI defined volume which had high Cho:Cr ratio

 Table 1. The grading system used to grade the choline:

 creatine (Cho:Cr) ratio for each MR spectroscopy voxel

	Grade	Clinical target volume	Dose painting
Cho:Cr <1	0		
Cho:Cr ≥1 but <2	1	CTV1	5400
Cho:Cr ≥2 but <3	2	CTV2	5940
Cho:Cr ≥3	3	CTV3	7000

Phase II Trial of Radiosurgery to Magnetic Resonance Spectroscopy—Defined High-Risk Tumor Volumes in Patients With Glioblastoma Multiforme

Douglas B. Einstein, M.D., Ph.D.,* Barry Wessels, Ph.D.,* Barbara Bangert, M.D.,[†] Pingfu Fu, Ph.D.,[§] A. Dennis Nelson, Ph.D.,[†] Mark Cohen, M.D.,^{||} Stephen Sagar, M.D.,[‡] Jonathan Lewin, M.D.,[†] Andrew Sloan, M.D.,[¶] Yiran Zheng, M.S.,* Jordonna Williams, R.N.,* Valdir Colussi, Ph.D.,* Robert Vinkler, R.T.T.,* and Robert Maciunas, M.D. M.P.H.[¶]

> Boost toward areas of MRSI determined high biological activity (Cho/NAA ratio>2) + 3DCRT 60 Gy

Median OS entire cohort 15.8 months

Survival time (mo) RTOG historical Survival difference of EORTC historical Survival difference of GK MRS GK MRS patients vs. No. of control XRT GK MRS patients vs. control. historical control Classification patients median survival historical control XRT + temodar alone 4.1 0.6 >22* RTOG RPA Class 3 17.9 4 21.47.6 2.4^{\dagger} RTOG RPA Class 4 163 13 18.7 11.1 4.0[†] 16 2.6^{\dagger} RTOG RPA Class 5 12.9 8.9 103 6.2^{\dagger} Concurrent 16 20.8NA NA 14.6temozolomide

International Journal of Radiation Oncology biology • physics

n=35

CTV definition in gliomas. Practical considerations

Use of advanced imaging for treatment planning purposes

Something new about OARs

Differences in Brainstem Fiber Tract Response to Radiation: A Longitudinal Diffusion Tensor Imaging Study

Jinsoo Uh, PhD,* Thomas E. Merchant, DO, PhD,* Yimei Li, PhD,[†] Tianshu Feng, MS,[†] Amar Gajjar, MD,[‡] Robert J. Ogg, PhD,* and Chiaho Hua, PhD*

Departments of *Radiological Sciences, [†]Biostatistics, and [‡]Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee

Int J Radiation Oncol Biol Phys, Vol. 86, No. 2, pp. 292-297, 2013

International Journal of Radiation Oncology biology • physics

Fig. 1. Volumes of interest drawn on the standard color-coded fractional anisotropy map. (a, b) Sagittal and coronal views of midbrain and pons showing cranial-caudal locations of volumes of interest. (c, d) Axial views of midbrain and pons. (e) Substructures within brainstem.

Radiation induced neurotoxicity

Hippocampal avoidance

Review

Why avoid the hippocampus? A comprehensive review Vinai Gondi^{a,*}, Wolfgang A. Tomé^{a,b}, Minesh P. Mehta^a

Clinical Study

Hippocampal-sparing radiotherapy: The new standard of care for World Health Organization grade II and III gliomas?

M.B. Pinkham^{a,e,*}, K.C. Bertrand^e, S. Olson^b, D. Zarate^f, J. Oram^{b,c}, A. Pullar^{a,e}, M.C. Foote^{a,d,e}

n=18

Fig. 1. Axial planning CT scans fused with T2-weighted fluid attenuated inversion recovery sequence MRI showing isodose distributions for a representative patient planned with intensity modulated radiotherapy (IMRT) (left) and conventional three-field three-dimensional conformal radiotherapy (right) techniques. The patient has a debulked World Health Organization grade II oligodendroglioma of the left temporal lobe and the dose prescribed to the planning target volume (red line) is 50.4 Gy in 28 fractions. The IMRT plan is more conformal and dose delivered in the intermediate range (25–45 Gy, cyan-green-yellow colourwash) is reduced, including that to the contralateral hippocampal avoidance volume (yellow line).

Hippocampal Dosimetry Predicts Neurocognitive Function Impairment After Fractionated Stereotactic Radiotherapy for Benign or Low-Grade Adult Brain Tumors

Vinai Gondi, M.D.,* Bruce P. Hermann, Ph.D.,[†] Minesh P. Mehta, M.D., FASTRO,[¶] and Wolfgang A. Tomé, Ph.D., FAAPM*,[‡],[§]

Int J Radiation Oncol Biol Phys. Vol. 83, No. 4, pp. e487-e493, 2012

Table 4Binary logistic regression analysis for risk ofimpairment in Wechsler Memory Scale-III Word Lists DelayedRecall at 18 months

	Odds		
Variable	ratio	95% CI	p value
Age, y (≤ 50 vs. > 50)	1.5	0.1-20.9	0.774
D40% of hippocampus >7.3 Gy	19.3	1.1-338.0	0.043
Age, y (≤ 50 vs. > 50)	1.2	0.1-15.8	0.876
D100% of hippocampus >0.0 Gy	14.8	0.8-266.2	0.068

Abbreviations: D40% = equivalent dose in 2-Gy fractions (EQD₂) assuming $\alpha/\beta = 2$ Gy to 40% of the structure volume; D100% = EQD₂ to 100% of the structure volume; CI = confidence interval.

n=18

Radiation Oncology biology • physics

Equivalent dose in 2-Gy fractions to 40% of the bilateral hippocampi greater than 7.3 Gy is associated with long-term memory impairment.

www.rtog.org/CoreLab/ContouringAtlases/HippocampalSparing.aspx

Hippocampal Contouring: A Contouring Atlas for RTOG 0933. *MR Images courtesy of: Holmes CJ, Hoge R, Collins L, et al. "Enhancement of MR Images Using Registration for Signal Averaging" Journal of Computer Assisted Tomography 22, 324-333 (1998)*

Red: Hippocampus Green: Hippocampal Avoidance Zone

Generate the hippocampal avoidance zone using a 5mm volumetric expansion on the hippocampus.

Hippocampal Contouring: A Contouring Atlas for RTOG 0933. MR Images courtesy of: Holmes CJ, Hoge R, Collins L, et al. "Enhancement of MR Images Using Registration for Signal Averaging" Journal of Computer Assisted Tomography 22, 324-333 (1998)

Hippocampus	D _{max} <7.3-11	Gondi, R&O 2010 Gondi, IJROBP 2011
	D _{max} <12-20	Marsh, IJROBP 2010 Marsh, J Med Imag Rad Onc 2011
	D _{max} < 30	Pinkham, J Cl Neurosc 2012

Definition of the clinical volumes in gliomas

Take-home messages

- GBM: Base your definition of CTV on postoperative MRI, t1-weighted images, without including edema. GTV+2 cm

- LGG: Base your definition of CTV on postoperative MRI, T2-weighted images. GTV +1/1,5 cm

- Remind to modify your CTV according to anatomical barriers

- Clinical benefit of PET or advanced MRI in radiotherapy planning is still to be confirmed

- Include among your OARs the hippocampus. Try to lower its dose below 15 Gy

INCOME IN COMPANY.

Oncole

Radiothérapie des tumeurs cérébrales : quelles marges ?

Radiotherapy for brain tumours: Which margins should we apply?

V. Martin^{a,*}, É. Moyal^b, M. Delannes^b, L. Padovani^c, M.-P. Sunyach^d, L. Feuvret^e, F. Dhermain^a, G. Noël^f, A. Laprie^b

Glioblastomes (grade IV)	EORTC : T1 après injection de gadolinium + 2–3 cm corrigé au FLAIR RTOG CTV 1 = FLAIR + 2 cm CTV 2 = T1 après injection de gadolinium + 2 cm	
Glioblastomes sujets âgés	EORTC : T1 après injection de gadolinium + 1,5–2 cm RTOG : idem sujets jeunes	AND DECEMBER OF
Gliomes anaplasiques (grade III)	EORTC : T1 après injection de gadolinium et FLAIR + 1,5–2 cm RTOG CTV 1 = FLAIR + 2 cm CTV 2 = T1 après injection de gadolinium + 1,5 cm	Car
Gliomes de grade II	FLAIR + 1–1,5 cm	Radiothéra
Gliomes du tronc	FLAIR + 1,5–2 cm	nadiotifere
Médulloblastomes	Volume cible anatomoclinique craniospinal Encéphale en totalité, 5 mm sous la lame criblée Axe médullaire, corps vertébraux et trous de conjugaison Cul-de-sac dural défini dur l'IRM Boosts selon l'âge et le stade Soit fosse postérieure Soit lit tumoral + 5mm ± résidu tumoral sans marge	Journal de la Société Française de Radiothéra Entre Augusta de Radiothéra
PNET (primitive neuroectodermal tumours)	Irradiation craniopinale puis cavité opératoire + 0,5 cm Résidu tumoral sans marge	A Second and A Sec
Épendymomes	Lit opératoire et résidu tumoral + 1–1,5 cm Irradiation craniospinale si métastatique	10 Okrade Australia Kanar 24 Martine Barrier Kanar 24 Martine Barrier Martine Barrier Martine Barrier
ATRT (atypical teratoid rahbdoid tumours)	Sous-tentorielles : lit opératoire/résidu + 1,5 cm Sus-tentorielles : idem + 1 cm Irradiation craniospinale si métastatique	Annotation
Craniopharyngiomes	Lit tumoral ou tumeur en place (parties kystique et charnue)+5 mm Replanification sur modifications du kyste en cours de traitement	La Contra
Germinomes	Germinomes purs non secrétants PTV 1 = ventricules + 0,5 cm PTV 2 = tumeur primitive + 0,5 cm Irradiation craniospinale si métastatique Non germinomateuses CTV = GTV + 0,5 cm Irradiation craniospinale si métastatique	

Encéphale en totalité jusqu'en C1-C2 ou C2-C3

Volume tumoral macroscopique + 1 à 3 mm

 $\pm boost = prise de contraste + 2 cm$

Lymphomes du système nerveux central

Méningiomes de grade I

Grazie per l'attenzione