Fattori prognostici e sottotipi molecolari: interazioni con la RT

B. Meduri

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Modena Policlinico

Brain metastases from breast cancer: proposition of new prognostic score including molecular subtypes and treatment

Breast Cancer(s)

"Classic" prognostic factor

- Node involvement
- Tumor size
- Histologic grade
- ER and PgR expression
- HER-2 amplification

• Markers of proliferation (Ki-67 or MIB-1)

Devita, Hellman & Rosenberg's Cancer: Principles & Practice of Oncology, 8th Edition

Predictive factor

Local recurrence after BCT

or mastectomy

- Clinical and Histopathologic
 Factors
- Immunohistochemical Markers
- Molecular Subtypes
- Gene Expression Profiling

RT Sensitivity

- DNA Double-Strand Break
 Repair
- Gene expression In Vitro Studies
- Gene expression In Vivo Studies

RT-induced damage and DNA damage response

Borchiellini D et al. Cancer Treatment Reviews 2012, 38:737

Human genome variations

• Tandem repeats, copy number variations of a gene, single-nucleotide polymorphisms (SNPs)

• *SNPs* (90% of cases)

- DNA sequence alteration affecting a single nucleotide, a point mutation
- No major deleterious clinical consequences
- Alter gene expression or protein function, predisposing

subjects to disease or influencing their response to a given treatment

Molecular subtype

(ER - , PR - and HER2 -) Basal-like subtype

ERBB2+ enriched

Luminal **B**

Luminal A

Perou CM. *Nature* 2000; 406, 747–752 Sørlie T. *PNAS* 2001; 98 (19), 10869-74

Acute toxicity

Association of single nucleotide polymorphisms in the genes ATM, GSTP1, SOD2, TGFB1, XPD and XRCC1 with risk of severe erythema after breast conserving radiotherapy

... We investigated in a retrospective study on breast cancer patients the association of these SNPs with the risk of acute tissue toxicity in terms of erythema, with special focus on the relevance of breast size.

RADIATION

Materials and methods

- Blood samples collected from 83 pts with breast cancer Stage I/II treated with QUART
- DNA extracted from the whole blood of the patients using a genomic extraction kit
- It was tested using the two-sided exact Cochran-Armitage trend test:
 - Association between breast volume and risk of erythema
 - Associations between erythema grade and each individual SNP

Results

Significant association between the risk of *erythema* and *breast volume* (OR=2.55, p=0.041)

			all pati (n = 83	ents)				
Gene (codon)	Genotype	aa	n (%)	G0/1 ^a	G2/3ª	OR ^b	95% Cl ^c	Pd
ATM	GG		63 (76)	28	35	1		
(1853)	GA		18 (22)	9	9	1.18	0.45 - 3.25	0.826
	AA		2 (2)	0	2	1.38	0.20 - 10.59	
GSTP1	AA		37 (45)	19	18	1		
(105)	AG		38 (45)	12	26	1.01	0.49 - 2.09	1.000
	GG		8 (10)	6	2	1.02	0.24 - 4.35	
TGFB1	CC		29 (35)	14	15	1		
(pos-509)	CT		40 (48)	18	22	<mark>1.2</mark> 6	0.65 - 2.50	0.530
	TT		14 (17)	5	9	1.59	0.42 - 6.24	
XPD ^e	GG		34 (42)	19	15	1		
(751)	GT		38 (46)	14	24	1.85	0.90 - 4.00	0.098
	TT		10 (12)	3	7	3.44	0.81 - 16.01	
XRCC1	GG		36 (43)	17	19	1		
(399)	GA		33 (40)	13	20	1.02	0.54 - 1.93	1.000
	AA		14 (17)	7	7	1.04	0.29 - 3.73	

Raabe et al. Radiation Oncology 2012, 7:65

Results

		patient (n = 48	s with (breast v	olume	e <750 cm ³			patient (n = 35	s with l	breast	volume	≥750 cm³	
Gene (codon)	Genotype	n (%)	G0/1ª	G2/3ª	ORb	95% CI ^c	P ^d	aa	n (%)	G0/1 ^a	G2/3ª	OR ^b	95% Cl ^c	P ^d
ATM	GG	36 (75)	20	16	1				27 (77)	8	19	1	0.19 - 5.68	7
(1853)	GA	11 (23)	6	5	1.43	0.38 - 5.67	0.573		7 (20)	3	4	0.92	0.04 - 32.21	1.000
	AA	1 (2)	0	1	2.05	0.15 - 32.15			1 (3)	0	1	0.84		
GSTP1	AA	21 (44)	12	9	1				16 (46)	7	9	1		
(105)	AG	21 (44)	10	11	0.98	0.39 - 2.44	1.000		17 (48)	2	15	1.25	0.32 - 5.29	0.772
	GG	6 (12)	4	2	0.96	0.15 - 5.97			2 (6)	2	0	1.56	0.10 - 28.03	
TGFB1	CC	18 (38)	13	5	1				11 (31)	1	10	1		
(pos-509)	СТ	24 (50)	12	12	3.10	1.11 -10.21	0.028		16 (46)	6	10	0.36	0.10 - 1.14	0.083
	тт	6 (12)	1	5	9.58	1.23 - 104.30			8 (23)	4	4	0.13	0.01 - 1.29	
XPD e	GG	20 (43)	12	8	1				14 (40)	7	7	1		
(751)	GT	20 (43)	10	10	1.42	0.59 - 3.59	0.420		18 (51)	4	14	3.95	0.91 - 22.75	0.046
	Π	7 (14)	3	4	2.03	0.34 - 12.89			3 (9)	0	3	15.62	0.84 - 517.40	
XRCC1	GG	25 (52)	14	11	1				11 (31)	3	8	1		
(399)	GA	17 (35)	9	8	1.13	0.46 - 2.76	0.840		16 (46)	4	12	0.62	0.20 - 1.84	0.464
	AA	6 (12)	3	3	1.27	0.21 - 7.63			8 (23)	4	4	0.39	0.04 - 3.39	

Raabe et al. Radiation Oncology 2012, 7:65

Results

Odd ratios with respect to risk of erythema compared with the OR previously determined for risk of fibrosis Association of the <u>combination of all SNPs</u> with erythema was tested: **no significant association** with risk of erythema for *all patients* (OR = 1.20; p = 0.209) *small breast vol* (OR = 1.36; p = 0.098) *large volume* (OR = 0.89; p = 0.712)

Conclusion

... this study demonstrates ... that *significant associations* between a specific SNP and <u>risk of erythema</u> can be identified **if patients are grouped by their breast volume**.

The combination of SNPs using risk alleles according to erythema is substantially **different from** a risk score previously defined **for risk of fibrosis**

... these results need to be replicated in an *independent and larger study*

Journal of Experimental & Clinical Cancer Research

Late toxicity

SNPs in DNA repair or oxidative stress genes and late subcutaneous fibrosis in patients following single shot partial breast irradiation

... to evaluate the potential association between SNPs related response to **radiotherapy injury**, such as genes related to **DNA repair** or enzymes involved in **anti-oxidative activities** in patients who underwent a *Single Shot 3D-CRT PBI* after BCS...

Materials and methods

• 57 patients underwent BCS and a sentinel node biopsy and/or axillary dissection for early breast adenocarcinoma

- Single dose **3D-CRT APBI** (18 Gy or 21 Gy)
- **Fibrosis** assessed using the National Cancer Institute's Common Terminology Criteria for Adverse Events (*CTCAE* 3.0).
- SNPs: XRCC3 C18067T (Thr241Met), XRCC3 A4541G (5'-UTR), XRCC1 G28152A (Arg399Gln), GSTP1 A313G (Ile105-Val) and RAD51 G135C (untranslated region).

Results

Age (years)	median (range)	66 (51-87)
Tumor stage	Tis/T1/T2	1/48/8
Nodal stage	N0/N1	54/3
Chemotherapy	yes/no	15/42
Hormone-therapy	yes/no	52/5
Follow-up (months)	median (range)	38 (19-50)

57 patients (March 2006 - January 2008)

Polymorphism distribution:

Allele frequencies comparable to those reported for European populations

Results

A.C.	Polymorphisms	Genotype	≥ G2 fibrosis or fat necrosis	OR (95% CI)	p-value (*)	p-value (§)
2.4 36	GSTP1	AA	38%	1		
24 14		aa/Aa	64%	2.9 (0.88-10.14)	0.047	0.064

<u>Subcutaneous fibrosis</u> (\geq G2) or fat necrosis more frequent (64% vs 38%) in patients with the mutation or heterozygote genotype of **GSTP1** (OR = 2.9; p = 0.047).

No statistical significant increase/decrease of ORs was observed with *other SNPs* or their combination.

Conclusion

.... this study ... has a power of the study statistically sufficient to suggest that **SNP in GSTP1 gene** could be useful to predict <u>late</u> <u>toxicity</u> in BC patients who underwent SSPBI.

...future research will focus on the performance of many additional SNPs in other genes that are associated with the development of radiation toxicity...

Late toxicity

Individual patient data meta-analysis shows no association between the SNP rs1800469 in TGFB and late radiotherapy toxicity

To overcome publication bias, the international Radiogenomics Consortium collected and analysed individual patient data from both published and unpublished studies on **SNPs** in *TGFB1* (rs1800469 c.-1347T>C) and radiationinduced normal tissue injury

3t

Materials and methods

•3257 patients with *breast cancer* (from 21 different cohorts, from members of the international *Radiogenomics Consortium*)

- <u>Patient-related factors</u>: age, smoking status, body mass index (BMI), breast volume and the presence of co-morbidity such as diabetes mellitus and hypertension
- <u>Treatment-related factors</u>: total dose, number of fractions, use of a radiotherapy boost, chemotherapy, hormone-therapy, acute toxicity, post-operative infection and surgical cosmesis
- •SNPs studied in TGFB1: **rs1800469** c.-1347T>C
- •Univariate analysis and multivariate analyses were performed

Results

Study n (UVA) OR (UVA) SE (UVA) RAPPER 786 0.99 0.11 LeND WLE 480 1.13 0.17 MARIE 389 1.24 0.21 Post-mastectomy DBCG 2 234 1.00 0.17 RACE 161 0.75 0.18 LeND mastectomy 0.72 132 1.45 Gene-PARE 92 1.24 0.45 78 Sant Pau 0.67 0.32 69 0.72 Hamburg 1.94 41 Post-mastectomy DBCG 1 0.49 1.19 52 Pre-START trial 1.13 0.41

Univariate analysis (UVA)

OR = 1.015 (95% CI 0.89, 1.14) p = 0.67

Barnett GC et al. Radiotherapy and Oncology 2012, 105: 289-295

Conclusion

The meta-analysis demonstrates successful collaboration of groups included in the Radiogenomics Consortium...

.... this relatively large meta-analysis, found **no clinically relevant** association between the frequently-studied candidate SNP rs1800469 in TGFB1 and the development of fibrosis or other late radiotherapy toxicity...

Triple Negative Breast Cancer Is Associated With an Increased Risk of Residual Invasive Carcinoma After Lumpectomy

1e

Shirin Sioshansi, MD^{1,2}; Shahrzad Ehdaivand, MD, MPH^{3,4,5}; Christina Cramer, MD⁴; Michele M. Lomme, MD^{3,4}; Lori Lyn Price, MAS⁶; and David E. Wazer, MD^{3,7,8,9}

... to assess the **risk of residual carcinoma** related to multiple pathologic factors, including molecular phenotype...

Materials and methods

- Retrospective review of pathologic records (369 pts)
- Invasive breast cancer who were treated with lumpectomy followed by a second ipsilateral breast surgery
- Data were collected on age, tumor size, grade, mitotic count, status of margins, lymph nodes, ER, PR, and Her2, as well as presence of EIC, lymphovascular invasion (LVI), multifocality.
- Patients with residual **DCIS** and **neoadjuvant** chemotherapy were <u>excluded</u>
- •Univariate analysis and multivariate analyses were performed

Results

Variable	Luminal A and B (n=286)	Her2-enriched (n=16)	Triple negative (n=43)	Р
Median age, y	59	57	50	.0008
Median tumor size, cm	1.5	1.2	1.6	.39
High grade	19%	86%	74%	<.0001
High mitotic count	10%	50%	56%	<.0001
Lymphovascular invasion	20%	19%	30%	.27
Extensive intraductal component	35%	63%	43%	.07
Multifocal	30%	31%	33%	.94
Positive surgical margins	38%	6%	30%	.02
Positive lymph nodes	32%	27%	40%	.55
Residual invasive carcinoma	30%	31%	51%	.02

TN phenotype more likely to have

residual invasive carcinoma - younger population - high grade - high mitotic count

Sioshinashi S et al. Cancer 2012;118:3893-8.

Results

Correlation with residual invasive disease

Variable	Ν	OR (95% CI)	Р
Age \geq 45 y	365	0.45 (0.27, 0.76)	.003
Tumor size, cm	366		<.0001
≤1.0		Reference	
1.1-2		3.00 (1.62, 5.54)	.0005
>2		5.70 (2.98, 10.93)	<.0001
Grade	346		
1		Reference	
2		1.32 (0.68, 2.55)	.41
3		2.63 (1.31, 5.27)	.007
Lymphovascular invasion	367	2.56 (1.53, 4.28)	.004
Multifocal	367	1.78 (1.12, 2.85)	.02
Positive surgical margin	363	1.76 (1.12, 2.76)	.01
Positive lymph node	345	3.69 (2.29, 5.97)	<.0001
TN (vs non-TN)	343	2.48 (1.30, 4.74)	.006

Univariate Analysis

Multivariate logistic regression analysis

Variable	OR (95% CI)	Р
TN (vs non-TN)	3.28 (1.56-6.89)	.002
Positive lymph node	3.06 (1.77-5.30)	<.0001
Tumor size 1.1-2.0 cm vs <1.0 cm	1.89 (0.94-3.82)	.076
Tumor size $>$ 2.0 cm vs $<$ 1.0 cm	3.49 (1.65-7.38)	.001

statistical significance

nodal status (OR: 3.06, P < .0001) TN status (OR: 3.28, P = .002) tumor size (OR: 3.49, P = .001)

Conclusion

... study shows that **TN phenotype** is independently correlated with increased <u>risk of residual disease</u> after lumpectomy...

This finding suggests that **TNBCs** harbor more microscopic residual disease after lumpectomy ... molecular phenotype should factor into decisionmaking regarding the extent of initial surgery ... TNBCs may also benefit from dose escalation to the tumor bed region

Low p53 Binding Protein 1 (53BP1) Expression Is Associated With Increased Local Recurrence in Breast Cancer Patients Treated With Breast-Conserving Surgery and Radiotherapy

2e

- ... to determine the clinical significance of **P53 binding protein**
 - 1 (53BP1) expression for *local outcome* ... in a cohort of
 - women with early-stage breast cancer treated with breast-

conserving surgery and radiotherapy...

Materials and methods

- 477 patients with evaluable tumor cores for staining of 53BP1
- Histologic evidence of invasive breast carcinoma with early-stage (I/II)
 disease and treated with BCS + RT
- Immunohistochemical analysis performed
- on 5-mm-thick tissue sections
- IBRFS, RFS, OS calculated
- Multivariate analysis used to assess the independent contribution of each variable to survival

Results

Table 2	Ten-year survival as a function of 53BP1 expression						
		53] expre (% su					
	Outcome	Low	High	Р			
Ipsilatera surviva	l breast recurrence-free	76.8	90.5	.01			
Overall s	urvival rate	66.4	81.7	.02			
Cause-sp	ecific survival	66.0	87.4	<.01			
Distant n	netastasis-free survival	55.9	87.0	<.01			
Recurren	ce-free survival	45.2	80.6	<.01			

Results

Multivariate analysis for IBRFS

Prognostic factor	IBRFS	IBRFS HR (95% CI)	
Age >50 y	0.4844	0.753 (0.341-1.666)	
Race	0.4439	1.279 (0.682-2.399)	Low53BP1 expression and
Tumor size	0.0076	2.546 (1.282-5.053)	Low 55 D11 expression and
Systemic therapy*	0.5639	0.807 (0.390-1.670)	larger tumor size were found to
Margin status	0.2744	1.175 (0.880-1.569)	larger tullior size were found to
ER status	0.2455	1.146 (0.911-1.442)	ha independently predictive of
PR status	0.2862	0.896 (0.733-1.096)	be independently predictive of
HER2 status	0.7468	0.964 (0.772-1.204)	
N stage	0.1549	1.097 (0.966-1.246)	worse IBRFS
53BP1 expression	0.0254	0.382 (0.164-0.888)	

Results

	Histolo			
	Triple	negative		
Outcome	53BP1 low	53BP1 high	Luminal*	P^{\dagger}
Ipsilateral breast recurrence-free survival	72.3	93.9	89.3	.036
Overall survival	59.5	89.8	78.1	.104
Cause-specific survival	63.4	85.5	85.3	.108
Distant metastasis-free survival	48.2	86.8	87.3	.004
Recurrence-free survival	37.8	83.7	80.0	.001

Low53BP1 expression *among triple-negative* was associated with **worse IBRFS** High 53BP1 expression was associated with similar or better outcomes when *compared with the luminal patients*

Conclusions

...Low53BP1 expression is an independent prognostic indicator for <u>local relapse</u> among other endpoints in early-stage breast cancer and TN breast cancer patients treated with BCS + RT.

... These results should be verified in larger cohorts of patients to validate their clinical significance.

Prognostic Value of Molecular Subtypes, Ki67 Expression and Impact of Postmastectomy Radiation Therapy in Breast Cancer Patients With Negative Lymph Nodes After Mastectomy

3e

... To determine whether Ki67 expression and breast cancer subtypes could predict <u>locoregional recurrence</u> (LRR) and influence the *postmastectomy radiotherapy* (PMRT) decision in breast cancer (BC) patients with pathologic negative lymph nodes (pN0) after modified radical mastectomy (MRM)....

Materials and methods

- 699 BC patients without lymph node involvement after mastectomy and axillary lymphadenectomy
- Patients with tumors overexpressing HER2 received adjuvant trastuzumab
- •<u>PMRT</u> considered for each patient *during multidisciplinary staff meetings*
- Molecular subtypes according to IHC profile:
 - Luminal A (ER +, PR + and HER2-)
 - Luminal B (ER+, PR + and HER2+)
 - HER2 enriched (ER and PR and HER2 +)
 - Basal-like or TN (ER , PR and HER2 -)

Results

In multivariate analysis **Ki67 > 20%** was the **only independent prognostic**

factor associated with *increased LRR* (HR, 4.18; P<.0215)

None of the molecular subtypes was associated with the risk of LRR in MVA

Selz J et al. Int J Radiation Oncol Biol Phys, 2012; 84:1123-32

Results

að e	PMRT group	Mo-PMRT group	
	5-year LRR-FS, % (95% CI)	5-year LRR-FS, % (95% CI)	Р
Entire population	97.7 (95.2-100)	96.8 (95-98.5)	.663
Luminal A*	92.9 (87; 99.3)	93.3 (90.1; 96.6)	.8352
Luminal B [†]	80 (58.7; 100)	84.8 (69.6; 100)	.7256
HER2+ [‡]	90 (73.2; 100)	78.2 (60.1; 100)	.3025
TN	89.4 (78.7; 100)	86.7 (77.2; 97.4)	.935
Risk +	90.7 (84.3; 97.6)	84.9 (79; 91.2)	.3512
Risk–	94.6 (88.7; 100)	97.4 (95.1; 99.7)	.1836

PMRT was not associated with a *higher rate of locoregional control* in the entire population or in the various subgroups of molecular subtypes

Selz J et al. Int J Radiation Oncol Biol Phys, 2012; 84:1123-32

Conclusions

... Ki67 expression but not BC molecular subtypes are predictive of locoregional recurrence in BC patients without lymph node involvement after modified radical mastectomy...

... The benefit of PMRT in the subgroup of patients with high risk of LRR defined by KI67 > 20% should be further investigated in prospective studies...

Selz J et al. Int J Radiation Oncol Biol Phys, 2012; 84:1123-32

Original article

4e

Predictive value of breast cancer molecular subtypes in Chinese patients with four or more positive nodes after postmastectomy radiotherapy

... To evaluate predictive value of breast cancer molecular subtypes in patients with *four or more positive nodes after postmastectomy radiotherapy*...

Materials and methods

- 774 patients with four or more positive nodes after mastectomy
- No patients received anti-HER2 treatment.
- 98% received chemotherapy
- A total of 475 patients (61.4%) were treated with PMRT within six months after mastectomy

•Endpoints: rates of locoregional recurrence-free survival (LRFS), distant metastasis-free survival (DMFS) and overall survival (OS).

Results

Wu S et al. Breast, 2012; 21:657-61

Results

Wu S et al. Breast, 2012; 21:657-61

Results

Characteristic	Her2-enriched ^b					
	PMRT $(n = 72)$	Non-PMRT $(n = 63)$	P value			
Tumor stage		1 .1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	0.182			
T1-T2	47 (65.3)	48 (76.2)				
T3-T4	25 (34.7)	15 (23.8)				
N stage			0.892			
N2	40 (55.6)	34 (54.0)				
N3	32 (44.4)	29 (46.0)				
Mortality	39 (54.2)	34 (54.0)	0.995			
Metastasis	39 (54.2)	34 (54.0)	0.990			
Recurrence	15 (20.8)	10 (15.9)	0.616			

Characteristic	Basal-like ^a			
	$\frac{\text{PMRT}}{(n = 66)}$	Non-PMRT $(n = 39)$	P value	
Tumor stage			0.162	
T1-T2	46 (69.7)	32 (82.1)		
T3-T4	20 (30.3)	7(17.9)		
N stage			0.081	
N2	29 (43.9)	24(61.5)		
N3	37 (56.1)	15 (38.5)		
Mortality	38 (57.6)	20 (51.3)	0.531	
Metastasis	39 (59.1)	19 (48.7)	0.302	
Recurrence	15 (22.7)	11 (28.2)	0.530	

Wu S et al. Breast, 2012; 21:657-61

Conclusions

... different molecular subtypes of breast cancer have different prognoses and distinct sensitivities to PMRT

Brain metastases from breast cancer: proposition of new prognostic score including molecular subtypes and treatment

5e

... to develop a specific prognostic score for BC patients with brain metastasis, taking into account general and *specific biological factors*, the *molecular subtype* of BC, and *specific treatment parameters*, in order to help define homogeneous cohorts for prospective randomized trials ...

Materials and methods

130 patients with brain metastasis (BM) who received whole-brain RT
Survival curves were constructed with the Kaplan–Meier method and compared with the log-rank test

•Univariate (Cox regression model) and multivariate analysis was used to test the <u>following variables</u> for their impact on overall survival: age at BM diagnosis, KPS, RTOG RPA class, presence of extracranial metastases, sites of other extracranial metastases, number of BM, interval between primary tumor and BM diagnosis, tumor HR status, HER-2 overexpression, trastuzumab-based therapy and the BC molecular subtype

Covariate	Comparison	Hazard ratio (CI 95%)	<i>P</i> (<i>n</i> = 130) 0.366	
Brain metastases	Presence of systemic metastases vs. alone	1.52 (0.62; 3.74)		
Visceral metastases	Yes vs. no	1.34 (0.84; 2.11)	0.2159	
Bone metastases	Yes vs. no	1.07 (0.71; 1.60)	0.745	
KPS	>70 vs. <70	0.51 (0.34; 0.77)	0.0013	
Age at BM diagnosis	≥50 vs. <50	1.21 (0.80; 1.81)	0.329	
Histology	Lobular and other vs. Ductal	0.77 (0.34; 1.77)	0.545	
Tumor HR status	Negative vs. positive	1.37 (0.91; 2.06)	0.127	
HER-2 overexpression	Negative vs. positive	1.48 (0.98; 2.24)	0.0606	
HR- & HER2-	Yes vs. no	2.17 (1.38; 3.43)	0.0006	
HR± & HER2+	Yes vs. no	1.51 (0.99; 2.29)	0.0521	
HR+ & HER2–	Yes vs. no	1.17 (0.77; 1.79)	0.4667	
Trastuzumab-based therapy for HER2	Yes vs. no	0.45 (0.27; 0.75)	0.001631	
overexpressing tumor				
SBR grade	3 vs. 1–2	1.59 (1.00; 2.52)	0.0484	
LDH (U/I)	>500 vs. ≤500	2.01 (1.27; 3.16)	0.0026	
Lymphocyte count	>700 vs. ≤700	0.58 (0.37; 0.89)	0.0138	
Time interval (year) between primary tumor and BM diagnosis	≥ 2 vs. < 2	3.76 (0.52; 27.18)	0.968	
No. of BM	Multiple vs. single	1.12 (0.41; 3.06)	0.822	
Total radiation dose (Gy)	>30 vs. ≤30	1.54 (0.49; 4.91)	0.463	
RTOG RPA class	III vs. I–II	1.98 (1.32; 2.98)	0.0013	

Univariate analysis

- KPS <70
- RTOG RPA Class III
- trastuzumab-based therapy

for HER-2+

- triple-negative phenotype
- serum LDH level
- lymphocyte count at BM

diagnosis

were predictive of overall survival

Le Scodan R et al. J Neurooncol, 2012; 106:169–176

Entire population $(n = 130)$			7.43 (5.52;9.73)	54.9 (46.8; 64.3)	35.8 (28; 45.7)
BMBC RPA Class I good- prognosis group $(n = 32)$	Patients with HER2- overexpressing tumors treated with trastuzumab	1	19.53 (9.27; Inf)	77.1 (63.5; 93.6)	62.6 (47.2; 83)
BMBC RPA Class II intermediate-prognosis group $(n = 61)$	Remaining patients	1.28 (0.7–2.35)	12.49 (8.58; 24.99)	66.4 (52.5; 83.9)	51.3 (37; 71.1)
BMBC RPA Class III poor- prognosis group $(n = 37)$	Patients not treated with trastuzumab and: lymphopenia at BM diagnosis or KPS <70 and	3.75 (2.15-6.52)	3.52 (3.09; 6.15)	36.5 (26.1; 51.1)	12.2 (5.7; 26)
	\geq 50 years at BM diagnosis or KPS \geq 70 and triple- negative tumors	P value log rank <0.0001			

Best survival (median of 19.5 months) among pts HER2 + who received trastuzumab

<u>Worst survival</u> (median of 3.5 months) among pts who did not receive trastuzumab and who had lymphopenia at BM or KPS <70 and age over 50 years at BM diagnosis, or KPS \geq 70 and a triple-negative tumor

Le Scodan R et al. J Neurooncol, 2012; 106:169–176

Conclusions

BM patients HER2+ treated with trastuzumab can expect a median overall survival time of about 20 months ... this subgroup of patients may therefore have a higher risk of experiencing late radiation-related toxicity... and might benefit from longer-course WBRT with lower doses per fraction

... However, this specific prognostic score was developed in a selected population of patients with advanced disease ... and for whom WBRT was considered to be the standard treatment... Therefore ...prospective validation of this prognostic score is needed, and we encourage other investigators to validate it externally.

Conclusions

✤No "robust" data show association between <u>toxicity RT-related</u> and molecular subtypes

♦TN phenotype is independently correlated with increased <u>risk of residual</u> <u>disease</u> after lumpectomy (..should factor into decision-making regarding the extent of initial surgery ... TNBCs may also benefit from dose escalation to the tumor bed region)

Low53BP1 expression is a prognostic indicator for <u>local relapse</u> in *early-stage breast cancer and triple negative pts* treated with BCS + RT.

Conclusions

Ki67 expression but not molecular subtypes are predictive of locoregional recurrence in BC patients without node involvement after radical mastectomy; PMRT was not associated with a higher rate of locoregional control

Different molecular subtypes in patients with *four or more positive nodes after postmastectomy radiotherapy* have different prognoses and distinct sensitivities to PMRT (best outcome for luminal A e B, worse outcome for basal-like e Her2 enriched)

Conclusions

Genome-Wide Association Studies to investigate cancer risk, survival outcome, treatment-related toxicity, or predictive factors for treatment response. Progress in this field of research requires collaboration and cooperative groups to standardize methodologies and facilitate data sharing (national and international biorepositories)

