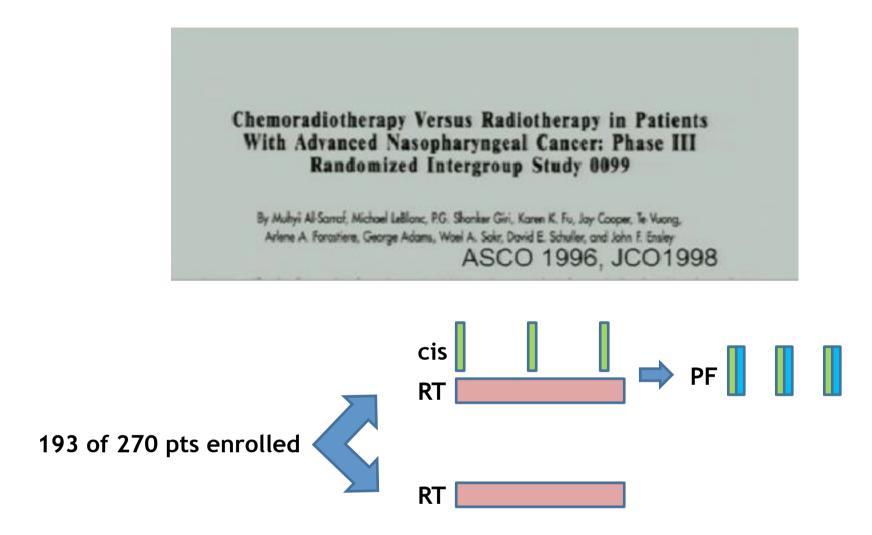
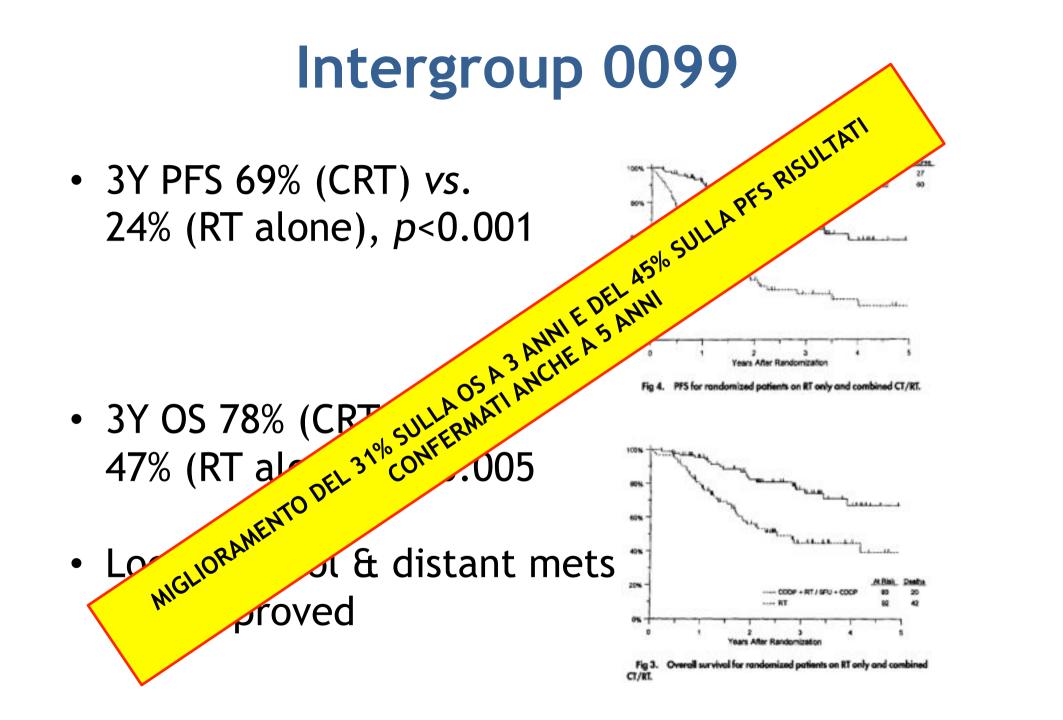


Neoplasie del rinofaringe Criticità nel timing terapia sistemica-radioterapia

Fabiola Paiar

CHEMOTHERAPY IN NASOPHARYNGEAL CANCER




Minimize the risk of distant recurrence through eradication of micro-metastases

Enhance the effects of radiation through synergistic agents

Facilitate planning of RT and to improve local disease control reducing the tumor volume prior to irradiation

Intergroup 0099

Issues

- Flawed study design
 - Are the benefits from chemo due to concurrent administration, adjuvant, or both?
- Terminated early after interim analysis showed survival benefit
- RT alone arm performed worse than expected
- Old RT techniques
- Many patients enrolled had WHO type I NPC (not EBVassociated)
- Adjuvant PF chemotherapy only feasible in some patients

STUDI RANDOMIZZATI FASE III RADIO-CHEMIOTERAPIA CONCOMITANTE VS RT ESCLU

Study (authors or trial)	RT (Gy)	Concurrent chemotherapy	Adjuv cþ
Al-Sarraf et al	70	CDDP	<u> </u>
(USA)		100 mg/m ²	
Chan et al		-	
(Hong Kong)	66 ± 10-20 Gy boost	3 cycles CDDP 40 mg/m ² CDD CDD CDD CDD CDD CDD Mg/m ² /wk CDDP 25 mg/m ² /d × 4d 3 cycles CDDP	29
		40 mg/m ²	9-
Lin et al	70-74	CDP NINT	NA
(Taiwan)		ell !	
Kwong et al			
(Hong Kong) F	66-68 ± 10 Gy b	TAI	CDDP/5FU + VBM
		SUL	3 cycles
Zhang et al	70-74 EI		NA
(Guangzhou)	ALL	o mg/m²/wk	
Wee et al	FRN	CDDP	CDDP
(Singapore)	ONT	$25 \text{ mg/m}^2/\text{d} \times 4\text{d}$	20 mg/m ² /d × 4d + 5FU
		3 cycles	$1000 \text{ mg/m}^2/\text{d} \times 4\text{d}$
Lee et al	boost	CDDP	CDDP 80 mg/m ² +
(Hong K		100 mg/m ²	5-FU 1000 mg/m ²
		3 cycles	3 cycles
	≥66 Gy in 5 or 6	CDDP	CDDP 80 mg/m ² +
	fractions/week	100 mg/m ²	5-FU 1000 mg/m ²
		3 cycles	3 cycles
	70	CDDP	CDDP 80 mg/m ² +
(Guangzhou)		40 mg/m ² weekly	5-FU 800 mg/m ²
(overigeriou)			3 cycles

CONTRIBUTO DELLA CHEMIOTERAPIA ADIUVANTE DOPO RADIOCHEMIOTERAPIA CONCOMITANTE

STUDI RANDOMIZZATI FASE III CHEMIOTERAPIA ADIUVANTE VS SOLA

Trials fase III	PAZ	SCHEMA	.%	OS %
ROSSI A ET AL Italia	229	Rt Rt→VCA NOSUOSE	55.8 57.7	67.3 58.5
CHI KH ET AL Taiwan	157	SCHEMA Rt Rt → VCA Bt CDDP/5FU+VBM CRT (UFT) ±CDDP/5FU+VBM	49.5 54.4	60.5 54.5
KWONG DL ET AL Hong Kong	NESSUN IN	CDDP/5FU+VBM CRT (UFT) ±CDDP/5FU+VBM	62.5 65	80.4 83.1

CHEMOTHERAPY IN LOCALLY ADVANCED NASOPHARYNGEAL CARCINOMA: AN INDIVIDUAL PATIENT DATA META-ANALYSIS OF EIGHT RANDOMIZED TRIALS AND 1753 PATIENTS

BERTRAND BAUJAT, M.D.,* HÉLÈNE AUDRY, M.SC.,* JEAN BOURHIS, M.D., PH.D.* ANTHONY T. C. CHAN, M.D.,[†] HALUK ONAT, M.D.,[§] DANIEL T. T. CHUA, M.D.,[§] DORA L. W. KWONG, M.D.,[§] MUHYI AL-SARRAF, M.D.,[§] KWAN-HWA CHI, M.D.,[¶] MASATO HAREYAMA, M.D.,^{*} SING F. LEUNG, M.D.,[†] KULLATHORN THEPHAMONGKHOL, M.D.,* AND JEAN-PIERRE PIGNON, M.D., PH.D.,* ON BEHALF OF THE MAC-NPC COLLABORATIVE GROUP

Conclusions

- Chemotherapy added to RT in NPC yields a small but statistically significant improvement in survival
- Benefit almost entirely from concurrent chemotherapy

However

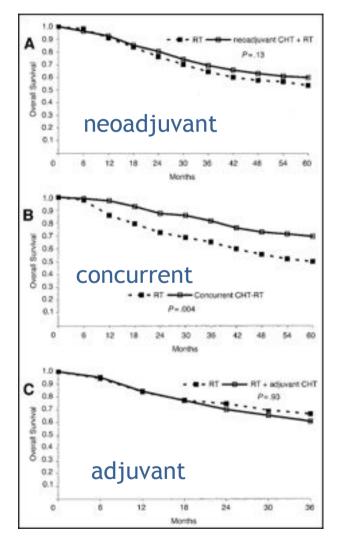
- Heterogeneity of studies, patients, chemotherapy regimens, and radiotherapy techniques limits lessons learned
- No clear chemotherapy regimen superior to others
- More effective chemotherapy regimens may exist

VOLUME 22 · NUMBER 22 · NOVEMBER 15 2004

JOURNAL OF CLINICAL ONCOLOGY

REVIEW ARTICLE

The Additional Value of Chemotherapy to Radiotherapy in Locally Advanced Nasopharyngeal Carcinoma: A Meta-Analysis of the Published Literature JA. Langendijk, Ch.R. Leemans, J. Barkhof, and B.J. Slotman


Ten randomized clinical studies

2,450 patients.

a significant benefit in favor of the addition of chemotherapy was found (P = .01) with an absolute survival benefit of 4% after 3 years.

concomitant chemotherapy with radiation is the most effective approach to combine chemotherapy and radiation in NPC

18% of pts allocated to CA-CRT were treated by C-CRT alone, another 20% discontinued after starting adjuvant CHT;
49% had dose reduction,
69% had delays in treatment.

Factors contributing to the efficacy of concurrent–adjuvant chemotherapy for locoregionally advanced nasopharyngeal carcinoma: Combined analyses of NPC-9901 and NPC-9902 Trials

Anne W.M. Lee^{*} Anne W.M. Lee^{*} Anne W.M. Stewart Y. Tung^b, Roger K.C. Ngan^c, Rick Chappell^d, Daniel T.T. Chua^c, T.X. Lu^f, Lillian Siu⁹, Terence Tan^b, L.K. Chan^a, W.T. Ng^a, T.W. Leung^b, Y.T. Fu^c, Gordon K.H. Au^e, C. Zhao^f, Brian O'Sullivan⁹, E.H. Tan^b, W.H. Lau^c

Findings

Comparison by intention-to-treat showed that the CRT, group achieved significant improvement in overall failure-free rate (FFR), locoregional-FFR and cancer-specific survival ($p \le 0.019$); but the improvements for distant-FFR and overall survival (OS) were statistically insignificant ($p \ge 0.14$). Further exploratory studies based on actual treatment showed that an additional improvement achieved was a significant gain in OS (CRT, versus RT, group: 72% versus 63% at 5-year, p = 0.037). Multivariate analyses showed that the dose of cisplatin during the concurrent phase had significant impact on locoregional-FFR and OS, while that of fluorouracil during the adjuvant phase was significant for distant-FFR. The 5-year locoregional-FFR for patients who received 0–1, 2 and 3 concurrent cycles were 79%, 88% and 88%, respectively; the corresponding distant-FFR by adjuvant cycles were 68%, 78% and 77%, respectively.

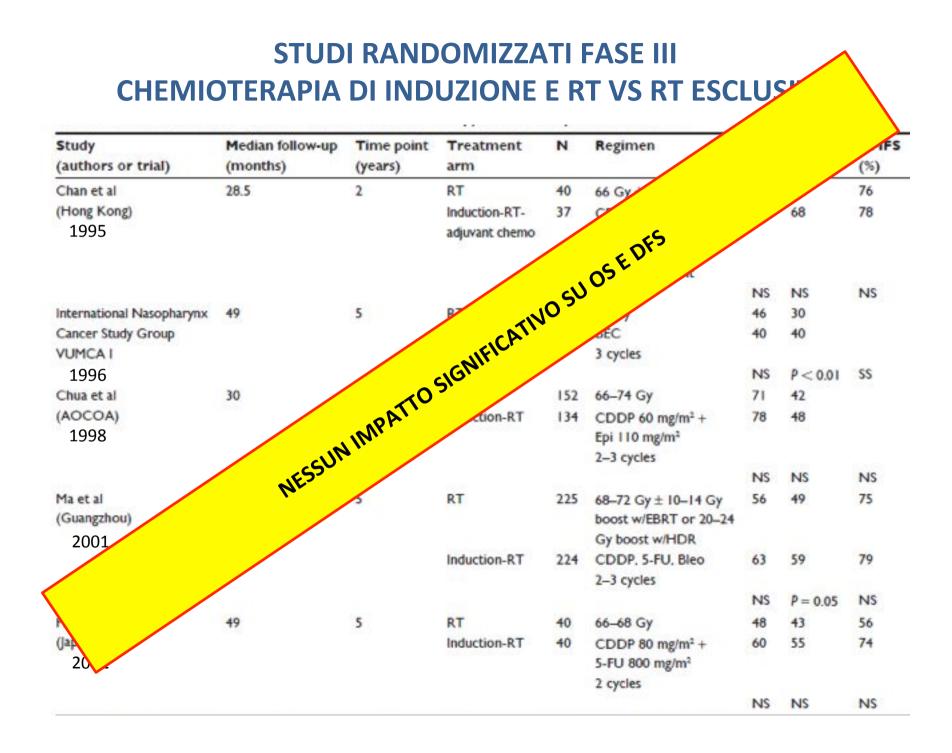
Interpretation

Our results support the current practice of adding concurrent cisplatin plus adjuvant cisplatin-fluorouracil to radiotherapy for treating patients with locoregionally advanced NPC. The concurrent phase is important for locoregional control and survival, cisplatin 200 mg/m² in two concurrent cycles might be adequate. Additional chemotherapy using fluorouracil-containing combination contributed to improving distant control.

COMPLIANCE

Author	% Complete treatment							
	Induction/a chemothera		Concurrent chemother	Radiotherapy				
	≥2 cycles	≥3 cycles	≥2 cycles	≥3 cycles				
Concurrent-adj	uvant							
Al-Sarraf [6]	60	55	86	63	73			
Lee [7, 12]	81	76	94	60	99			
Wcc [8]	NR	57	NR	71	95			
Chen [9]	68	61	90 ²	68 ³	99			
Chen [21]	NR	63	NR	45	98			

SHIFT FROM ADJUVANT TO INDUCTION CHEMOTHERAPY

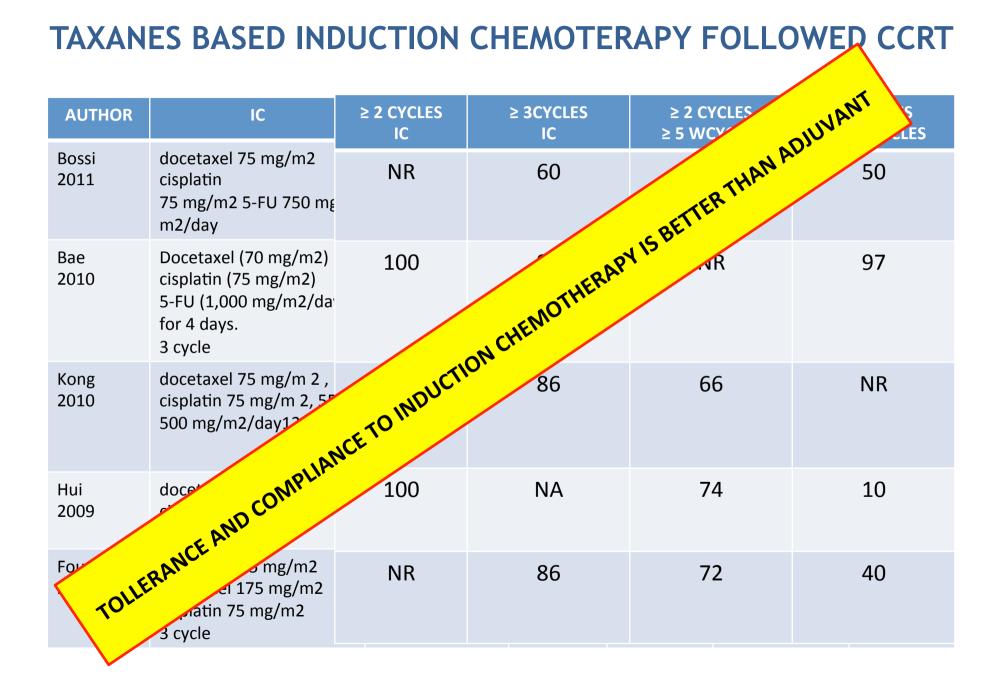

ADVANTAGES

- Induction chemotherapy is likely to be much more tolerable.
- Upfront use of a potent combination of cytotoxic drugs at an optimal dose intensity would be more effective for reduction of distant failure.
- Induction chemotherapy could shrink the primary tumor to give wider margins around delicate normal structures.
- Regression of bulky lymph nodes by induction chemotherapy could minimize marked changes in the contour of the neck during subsequent RT.

SHIFT FROM ADJUVANT TO INDUCTION CHEMOTHERAPY

DISADVANTAGES

- Induction chemotherapy delays the commencement of RT (the primary modality for locoregional control).
- Induction chemotherapy could jeopardize the tolerance to subsequent concurrent chemotherapy (the most potent sequence for enhancing tumor control).



... New interest in induction CT

Induction-concurrent chemoradiotherapy

Author	No.	Stage		Chemotherapy scheme		Radiotherapy		Tumor control			
		Inclusion	% Stage IV	Induction/ adjuvant	Concurrent	Technique	Dose (Gy)	Time-point (year)	Locoregional- FFR	Distant- FFR	Overall surviva
Induction-concu	urrent										
Rischin [22]	35	II-IVB	40	PEF	Р	2D	60	4	97	94	90
Oh [23]	27	II-IVB	NA	PFLI	HF	NR	70	5	93	92	77
Chan [24]	31	III-IVB	39	JC	Р	2D	66	2	90ª	81 ª	92
Al-Amro [25]	110	II-IVB	74	PE	Р	2D	66	3	68	74	71
Johnson [26]	44	II-IVB	NA	PF	PF	2D	70	5	75 *	89 ×	66
Lee [27]	49	IVA-B	100	PF	Р	3D	70	3	77	75	71
Yau [28]	37	IVA-B	100	PG	Р	3D	70	3	78	76	76
Mostafa [29]	36	III-IVB	61	PC	Р	2D	70	3	64 ª	86 ª	68
Ferrari [30]	34	IIB-IVB	59	PF	Р	3D	70	3	94	68	80
Airoldi [31]	40	III-IVB	44	PE	Р	3D	70	5	70	75	77
Zheng [32]	60	IIB-IVB	43	NF	N	IMRT	70	3	NR	NR	86
Kong [33]	59	III-IVB	49	TPF	Р	3D/ IMRT	70-76	1	98	96	100
Bae [34]	33	III-IVB	88	TPF	Р	NR	68.4	3	NR	NR	86
Bossi [35]	30	III-IVB	57	TPF	Р	IMRT	66-70	3	90 *	87 *	87
Airoldi [36]	30	III-IVB	53	JC	Л	3D	70	5	90	85	80
Sheung [37]	28	IIB-IVB	36	PEFL	PFL	Tomotherapy	70	3	88	78	84
Huang [38]	201	NA	NA	JU	J	2D	66-78	3	88	76	76
Hui [39]	34	III-IVB	44	TP	Р	2D/ IMRT	66	3	NR	NR	94
Fountzilas [40]	72	IIB-IVB	43	PEC	Р	2D/ 3D	66-70	3	76 ª	86 ª	67

Ongoing randomized trials to evaluate the therapeutic benefit of induction-concurrent chemoradiotherapy

Study					Endpoints
HKNPC	CSG 0501				
	Stage III or IV	-	CCRT"	- PF x 3	Progression free surviva
	(n = 798)	+	PF x 3	-+ CCRT"	and overall survival
		*	PX x 3	-+ CCRT"	
GORTE	EC				
	T2b-4, ≥ N1	+	TPF x 3	-+ CCRT ^b	Event free survival
	(n = 260)	*	CCRT ^b		
China					
	T3-4N1 or any T4 with N2-3	-	TPF x 3	-+ CCRT*	Failure free survival
	(n = 362)	*	CCRT*		
Singap	ore				
	Stage III or IV	-*	GJPax3	-+ CCRT ^b	Overall survival
	(n = 216)	*	CCRT ^b		
Taiwan					
	Stage IV	-	MEPFL x	3 -+ CCRT ^b	Disease free survival
	(n = 480)	*	CCRT ^b		
Abbrevi	iations:				
	tere, P - cisplatin, F - 5 fluorourad abine, J - carboplatin, Pa - paclita				n, L - leucovorin, G -
with s	econdary randomization on fraction	onal	tion (conver	ntional vs. accel	eration)
*3 week	dy cisplatin. ^s weekly cisplatin				
Note:	Progression free survival - defin	ning	events for	any failure or de	eath
2	Failure free survival - defining e	over	nts for any fa	ailure	

CONCLUSION

Concurrent CRT is still the standard of care for locoregionally advanced nasopharyngeal cancer.

The exact role of adjuvant CT remains unclear because it has not been adequately tested and the compliance is difficult but in high risk patients it may play a role.

The reported failure-free rates and survival rates for IC-CRT are encouraging, and this strategy is an option to be considered especially for patients with extensive locoregional disease infiltrating/ abutting critical structures.

CONCLUSION

Studies on IC-CRT show that tolerance and compliance to induction chemotherapy are better than adjuvant chemotherapy however, the acute toxicity rates are similar.

the Clinical Practice Guidelines in Oncology by the National Comprehensive Cancer Network (NCCN) has included ICCRT as option for patients with locoregionally advanced NPC (Category 3 evidence).

Additional improvements are still needed to improve the quantity and quality of life of NPC patients.