XXIV Congresso Nazionale AIRO Padova 8-11 Novembre 2014

TomoDirect™ IMRT for Hypofractionated Whole Breast Irradiation with a Simultaneous Integrated Boost

Pierfrancesco Franco, MD

Radiation Oncology

Department of Oncology

University of Torino

What is TomoDirect?

Franco and Ricardi, J Nucl Med Radiat Ther 2012, 3:5 http://dx.doi.org/10.4172/2155-9619.1000e107

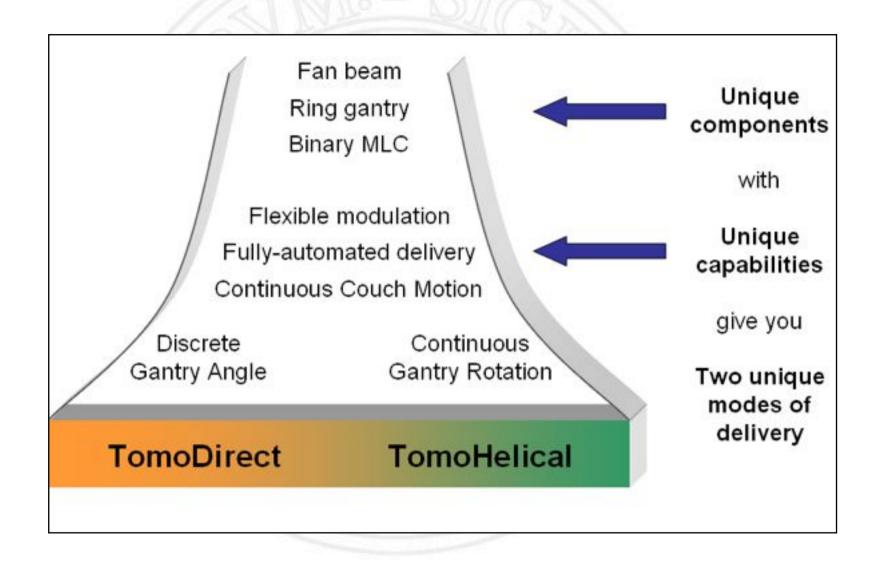
Editorial

Open Access

Tomo Direct to Deliver Static Angle Tomotherapy Treatments

Pierfrancesco Franco** and Umberto Ricardi*

Radiation Oncology Department, Tomotherapy Unit, Ospedale Regionale 'U. Parini', AUSL Valle d'Aosta, Aosta, Italy Oncology Departments, Radiation Oncology Unit, University of Torino, Turin, Italy


- Upgrade of the Tomotherapy plaftorm
- ➤ It allows for the delivery of radiation at discrete angles with a fixed gantry
- Suitable for clinical situations where beam arrangement is constrained to a limited number of pre-established directions

Franco P and Ricardi U - JNMRT 2012

TomoDirect

How does it work?

Fixed gantry but moving couch to deliver highly modulated multiplefields plans

Static gantry positions are combined with concomitant couch translation and multileaf collimator modulation

- Patient translated along CC-axis past the fixed fan-beam during each field delivery
- Beam intensity is modulated by the binary MLC while the pitch regulates the degree modulation in the sup-inf direction
- After delivery from 1 gantry angle, the gantry is rotated to a different beam direction and the patient is passed through the bore again for the subsequent field

First clinical experience

Tumori, 97: 498-502, 2011

TomoDirect: an efficient means to deliver radiation at static angles with tomotherapy

Pierfrancesco Franco¹, Paola Catuzzo², Domenico Cante^{1,6}, Maria Rosa La Porta^{1,6}, Piera Sciacero^{1,6}, Giuseppe Girelli^{1,6}, Valeria Casanova Borca^{2,7}, Massimo Pasquino^{2,7}, Gianmauro Numico³, Santi Tofani^{2,7}, Teodoro Meloni⁴, Umberto Ricardi⁵, and Franca Ozzello^{1,6}

- ✓ Adjuvant whole breast radiation
- ✓ Segmental bone pain palliation
- √ Whole brain radiotherapy

Franco et al, Tumori 2011

Convetionally fractionated WBRT and sequential boost (HT)

J Cancer Res Clin Oncol DOI 10.1007/s00432-013-1515-0

ORIGINAL PAPER

Intensity-modulated adjuvant whole breast radiation delivered with static angle tomotherapy (TomoDirect): a prospective case series

Pierfrancesco Franco · Michele Zeverino · Fernanda Migliaccio · Piera Sciacero ·
Domenico Cante · Valeria Casanova Borca · Paolo Torielli · Cecilia Arrichiello ·
Giuseppe Girelli · Gianmauro Numico · Maria Rosa La Porta · Santi Tofani · Umberto Ricardi

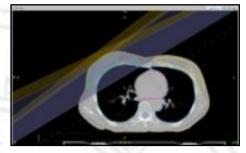
WBRT: 50 Gy/25 fr (2 Gy daily) over 5 weeks delivered with TomoDirect

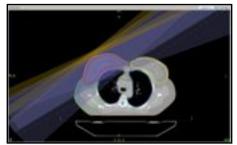
Sequential boost of 10 Gy/5 fr (2 Gy daily) for R0 resection or 16 Gy/8 fr (2 Gy daily) for R1 resection delivered with Helical Tomotherapy

Total OTT 6-7 weeks

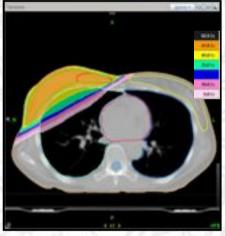
120 patients

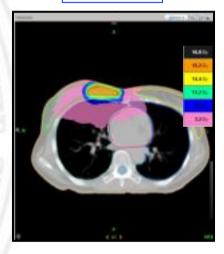
RT delivered < 3 months from surgery or after adjuvant CT if high-risk features were present




Planning and dose distribution

- ✓ 2-5 tangents fields arrangement to cover pt anatomy
- √ Dose prescription: D_{median} (homogeneity)
- √ Target coverage
 - 95% PTV receiving at least 95% of the prescribed dose
 - 99% PTV receiving at least 90% of the prescribed dose
 - D_{max} to PTV < 105% of the prescribed dose


- ✓ Ipsilateral lung: V₂₀<10%; V₁₀<20%, V₅<40%</p>
- ✓ Contralateral lung: V₅< 5%
- ✓ Contralateral breast: D_{max} < 5 Gy
 </p>
- √ Heart: V₂₅<10%
 </p>
- ✓ Excess irradiation (D_{2cc}): % of the prescription dose delivered to a volume of 2 cc of the normal tissues external to PTV





2 fields

4 fields

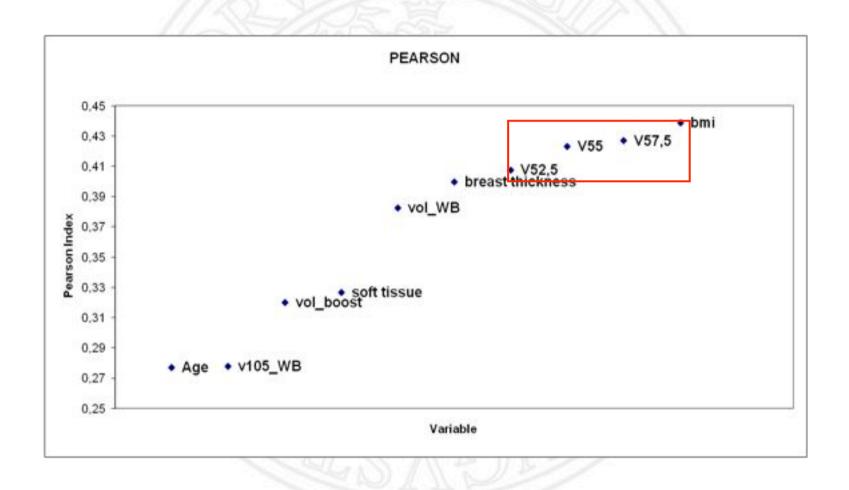
Dosimetric results

	Boost dose				
	10 Gy		16 Gy		
	Mean	SD	Mean	SD	
PTV					
WB					
$D_{se}(Gy)$	47.2	3.1	48.6	2.7	
$D_2(Gy)$	59.9	0.5	66.8	2.1	
Vos. (%)	95.6	15.2	99.9	5.1	
V_{108} (%)	38.8	12.6	54.0	10.4	
Boost					
$D_{ss}(Gy)$	58.6	0.7	65.0	2.6	
$D_2(Gy)$	59.5	7.6	67.6	2.0	
V_{95} (%)	99.7	1.1	101.0	4.5	
V ₁₀₈ (%)	0.0	0.0	0.0	0.0	
WB (excluding boost)					
Receiving 52.5 Gy (%)	32.6	9.9	46.0	9.6	
Receiving 55 Gy (%)	19.9	10.1	35.2	11.6	
Receiving 57.5 Gy (%)	11.5	6.1	22.7	8.3	
OARs					
Ipsilateral lung					
V ₅ (%)	20.2	4.4	22.4	6.3	
V ₁₀ (%)	14.1	3.7	15.4	4.5	
V ₂₀ (%)	9.7	2.9	10.8	3.	
D _{max} (Gy)	53.8	2.3	57.6	4.3	
MLD (Gy)	6.0	1.3	6.5	1.3	
Contralateral lung	11980				
D _{max} (Gy)	1.9	0.9	2.3	1.4	
Heart left-sided tumors					
V ₅ (%)	11.7	9.6	12.3	4.3	
V ₁₀ (%)	5.6	3.9	6.6	1.3	
V_{20} (%)	3.5	2.8	4.2	8.6	
V25 (%)	2.9	2.5	2.4	8.5	
MHD (Gy)	1.5	1.5	1.8	2.5	
D _{max} (Gy)	29.6	23.7	19.1	23.8	
Contralateral breast	3000				
$D_{max}(Gy)$	2.6	1.1	3.0	12	

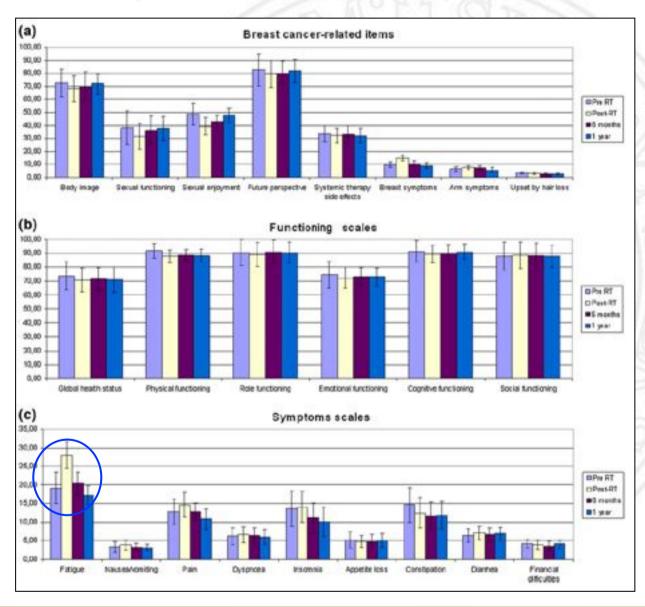
Very robust results but:

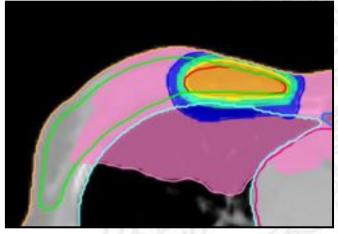
- > 1/3 breast volume outside TB gets 105%
- > 1/5 pts gets 110%
- > 1/10 gets 115%

Skin toxicity and cosmesis

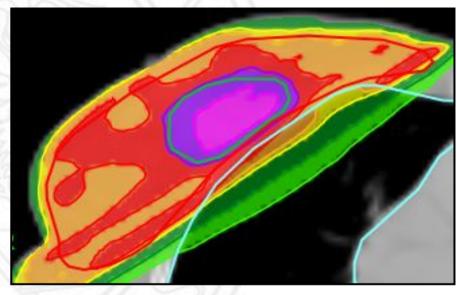

Skin toxicity	Grade	Patients	%
No change over baseline	0	26	22
Follicular, faint or dull erythema/epilation/dry desquamation/decreased sweating	1	75	63
Tender or bright erythema, patchy moist desquamation/moderate edema	2	15	12
Confluent, moist desquamation other than skin folds, pitting edema	3	4	3
Ulceration, hemorrhage, necrosis	4	0	0

Parameter	Grade (%)					
	G1	G2	G3	G4		
Induration-Fibrosis	3 (2.5)	2 (1.7)	0	-		
Atrophy	2 (1.6)	0	-	-		
Telangiectasia	1 (0.8)	0	0	-		
Hyperpigmentation	24 (20)	6 (5)		-		
Striae	3 (2.5)	0	-	-		
Ulceration	-	0	0	0		
Cosmesis						
Definition	Poor	Fair	Good	Excellent		
	3 (2.5)	7 (5.8)	28 (23.4)	82 (68.3)		


Acute toxicity predictors


QoL – EORTC QLQ-C30 and BR-23





Reducing unintended dose outside tumor bed with SIB

LINAC-based concomitant boost to the tumor bed

The Breast games

ORIGINAL ARTICLE

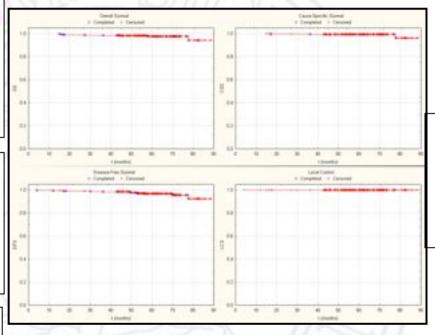
Accelerated Hypofractionated Adjuvant Whole Breast Radiotherapy with Concomitant Photon Boost after Conserving Surgery for Early Stage Breast Cancer: A Prospective Evaluation on 463 Patients

Domenico Cante, MD,* Maria Rosa La Porta, MD,* Valeria Casanova-Borca, PhD,* Piera Sciacero, MD,* Giuseppe Girelli, MD,* Massimo Pasquino, PhD,* Pierfrancesco Franco, MD,* and Franca Ozzello, MD*,*

Mid Chief (2015) NOTE: DOLD SERVICED SERVICE.

ORIGINAL PAPER

Five-year results of a prospective case series of accelerated hypofractionated whole breast radiation with concomitant boost to the surgical bed after conserving surgery for early breast cancer


Descritor Caste - Pierfrancesco Franco - Piera Sciacero - Grangpe Girelli -Anna Maria Marra - Marsino Paquino - Girlina Roseo - Valeria Casarera Borra -Guido Mondial - Oridio Paino - Roberto Barmano - Santi Tufani Giammano - Santio - Maria Bosa La Petta - Cuberto Biardii

Med Once (2000) 10 KIN OOF IS INVITADING AS A SEEN 2

ORDGEN AL PAPER

Hypofractionation and concomitant boost to deliver adjuvant whole-breast radiation in ductal carcinoma in situ (DCIS): a subgroup analysis of a prospective case series

Dammion Cante - Pierfinancesen Eranon - Piera Sciances - Gimeppe Girelli -Anna Maria Marra - Manimo Fanquino - Gadiana Revos - Valeria Casameta Borra -Casión Mondini - Ovidio Paino - Giannaneo Sussion - Sassi Tofasi -Maria Rosa La Preta - Umberto Ricardi

> 5yr-OS: 97.6%

> 5yr-CSS: 99.4

> 5yr-DFS: 96.6%

> 5yr-LC: 100%

Over 1.000 pts treated; long-term results on 375 pts

- > 45 Gy/20 fr 2.25 Gy/daily WBRT
- ➤ 50 Gy/20 fr 2.5 Gy/daily Tumor bed (Direct Photon Field and then FIF)

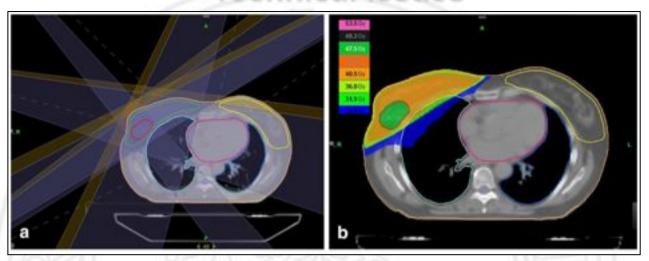
Cante et al, Breast J 2011; Med Oncol 2013 and 2014

SIB WBRT delivered with TomoDirect:

A prospective phase II trial

J Cancer Res Clin Oncol DOI 10.1007/s00432-013-1560-8	
ORIGINAL PAPER	
Intensity-modulated and l	nypofractionated simultaneous
	breast radiation employing statics noDirect): a prospective phase II trial
Pierfrancesco Franco · Michele Zeverino	· Fernanda Migliaccio · Domenico Cante · Piera Sciacero ·
Valeria Casanova Borca · Paolo Torielli · C Santi Tofani · Gianmauro Numico · Umbe	Cecilia Arrichiello · Giuseppe Girelli · Maria Rosa La Porta · rto Ricardi

☐ 45 Gy/20 fr over 4 weeks (2.25 Gy daily) as WBRT
☐ Simultaneous 0.25 Gy to the surgical bed
☐ 5 adjunctive Gy to the surgical bed
□ 50 Gv/20 fr over 5 weeks


Trial design

- One-armed optimal two-stage Simon's design
- Historical data of success (p0): 85% G0-G1 acute sking toxicity (G2-G3: 15%) with TD + HT
- Threshold for successful trial (p1): set to 94% of G1-G2 acute sking toxicity (G2-G3: 6%)
- α error (one-sided type I error): 5%
- β error (type II error; power 80%): 20%
- H₀: no difference in acute skin toxicity
 - First stage: 18/21 (86%) pts should have scored as G0-G1 acute skin toxicity
 - Second stage: another 61 pts accrued; at least 74/82 (90.2%) is the threshold for H0 rejection and definition of SIB-TD as 'promising'

Technical issues

- \succ 4 beams conformed to the WB-PTV: 2 canonical tangential beams, 1 anterior-posterior (AP) and 1 latero-lateral (LL) with a \pm 15° gantry angle range
- ➤ 1 or 2 small beams conformed to the TB-PTV to improve homogeneity and confomality; oblique incidence to reduce dose spread around TB-PTV
- > 3 MLC leaves (19 mm to isocenter plane) opened on anterior edge of each beam
- > FW: 2.5 cm; Pitch: 0.25 cm/projection; MF: 2-2.5
- > A 10 mm ring was used around WB-PTV and TB-PTV to reduce overdosage (skin and breast tissue)
- > Helping structures around WB-PTV used to avoid hotspots
- > OARs as avoidance structures

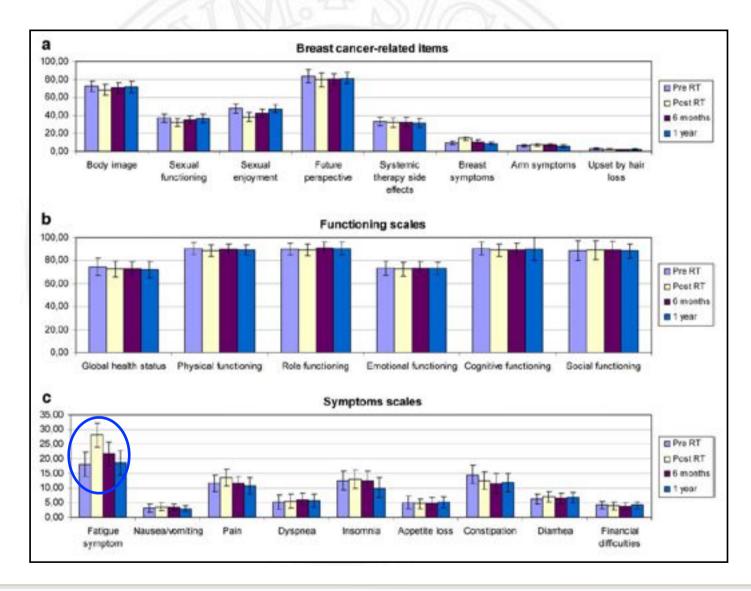
	Mean	SD
PTV		
WB		
D_{08} (Gy)	42.8	2.1
D ₂ (Gy)	47.3	1.2
V ₉₅ (%)	98.1	11.3
V ₁₀₅ (%)	1.9	0.9
Boost		
$D_{0g}(Gy)$	48.1	1.9
D_2 (Gy)	50.9	5.6
V_{95} (%)	99.5	1.1
V ₁₀₅ (%)	0	0
WB (excluding boost)		
V ₁₀₅ (%)	2.4	0.9
V ₁₁₉ (%)	0.01	0
OARs		
Ipsilateral lung		
V ₅ (%)	26.2	4.5
V ₁₀ (%)	15.6	3.4
V_{20} (%)	9.6	3.1
D _{max} (Gy)	45	2.9
MLD (Gy)	6.4	1.5
Contralateral lung		
D _{max} (Gy)	2.1	1.1
Heart (left-sided tumors)		
V ₅ (%)	12.8	8.6
V_{10} (%)	2.7	1.1
V ₂₀ (%)	1.3	0.5
V ₂₅ (%)	1.1	0.3
MHD (Gy)	2.1	1.2
D _{max} (Gy)	25.1	19.
Contralateral breast		
D _{max} (Gy)	2.9	1.3

Dosimetric results (82 pts)

Still very robust results and interestingly:

- **>** 2.5% breast volume outside TB gets 105%
- ➤ No volume gets 110%-115%

Skin toxicity and cosmesis (82 pts)


Skin toxicity	Grade	Patients	%
No change over baseline	0	33	41
Follicular, faint or dull erythema/epilation/dry desquamation/decreased sweating	1	43	53
Tender or bright erythema, patchy moist desquamation/moderate edema	2	5	6
Confluent, moist desquamation other than skin folds, pitting edema	3	1	<1
Ulceration, hemorrhage, necrosis	4	0	0

Parameters	Grade (%)						
	G1		G2	į.	G3	G4	
Induration-fibrosis	4 (5)	,	1(1)	1	0		
Atrophy	3 (4))	0		-	_	
Telangiectasia	1(1))	0		0	-	
Hyperpigmentation	10 (12)	2(2)		-	-	
Striae	2(2))	0		-	-	
Ulceration	-		0		0	0	
Cosmesis							
Definition	Poor	Fair		Good		Excellent	
	3 (4)	4 (5)		18 (22)		57 (69)	

QoL - EORTC QLQ-C30 and BR-23

To avoid hotspots

➢ Plan dose prescription: mean dose (50%of WB-PTV)

Higher prescription dose → **higher hotspots**

- ➤ Planned MF up to 2.5
- ➤ 2 dummy volumes for planning: medial (sternal region) and lateral (axillary region)
- ➤ Smaller penalities values than with HT (< 100 both for PTVs and OARs)
- > 1-2 small fields reduce spillage outiside TB

Conclusions

TomoDirect is:

- Feasible
- Reliable
- Dosimetrically consistent
- Clinically effective

An option to deliver radiation for breast cancer employing hypofractionation and SIB

TomoDirect provides

Versatility

to the Tomotherapy platform



XXIV Congresso Nazionale AIRO Padova 8-11 Novembre 2014

Pierfrancesco Franco, MD

Thank you for your attention

Mario Schifano - Indicazione - 1963

Padova, 9 Novembre 2014

