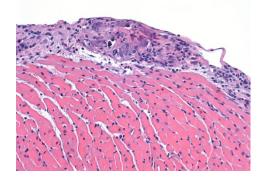


Radioterapia nel trattamento del carcinoma mammario e cardiotossicità: un problema reale, da quantificare, da evitare

Bruno Meduri

A.O.U. Policlinico di Modena

Radioterapia nel trattamento del carcinoma mammario e cardiotossicità

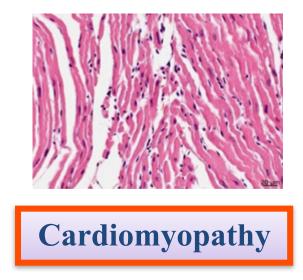

Un problema reale

Da quantificare

Da evitare

Cardiovascular Complications of Radiotherapy

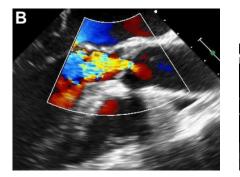
Pericardial Disease


Acute pericarditis: immediately after radiotherapy to 2 years later Minority develop *chronic pericarditis* with effusion or pericardial constriction

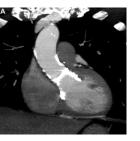
Physiopathology: Increased vascular permeability, fluid extravasation, inflammatory cell infiltration. Fibrous thickening, fibrinous pericardial adhesions

Increase TGF- β , FGF-2 \rightarrow *fibroblast activity* and *proliferation*

Damages intercalated discs and inhibits cardiac mitochondrial respiration \rightarrow elevated *production of ROS* and *myocardial dysfunction*


Activation renin-angiotensin-aldosterone system \rightarrow increase angiotensin II \rightarrow Increase TGF- β and *fibroblast activity*

Lee, M. S. (2013) Am J Cardiol 112(10): 1688-1696. Stewart, F. A., (2013) Clin Oncol 25(10): 617-624.


Cardiovascular Complications of Radiotherapy

Valvulopathy

Valve thickening, calcification \rightarrow *stenosis, regurgitation*

Increase expression of alkaline phosphatase, bone morphogenetic protein 2 and osteopontin \rightarrow Aortic valve interstitial cells convert to osteoblastlike cells

Angina (more common), acute coronary syndrome, heart failure

Activation of intima and media lysosomal enzymes \rightarrow atherosclerosis Endothelial injury \rightarrow ROS Release of von Willebrand factor and decreasing the production of thrombomodulin \rightarrow increases the adhesiveness of endothelial cells Coronary Artery Disease

Lee, M. S. (2013) Am J Cardiol 112(10): 1688-1696. Stewart, F. A., (2013) Clin Oncol 25(10): 617-624.

Radioterapia nel trattamento del carcinoma mammario e cardiotossicità

Un problema reale (??)

The NEW ENGLAND JOURNAL of MEDICINE						
	ESTABLISHED IN 1812	MARCH 14, 2013	VOL. 368 NO. 11			
Risk of Ischemic Heart Disease in Women after Radiotherapy for Breast Cancer						
Sarah C. Darby, Ph.D., Marianne Ewertz, D.M.Sc., Paul McGale, Ph.D., Anna M. Bennet, Ph.D., Ulla Blom-Goldman, M.D., Dorthe Brønnum, R.N., Candace Correa, M.D., David Cutter, F.R.C.R., Giovanna Gagliardi, Ph.D., Bruna Gigante, Ph.D., Maj-Britt Jensen, M.Sc., Andrew Nisbet, Ph.D., Richard Peto. F.R.S., Kazem Rahimi, D.M., Carolyn Taylor, D.Phil., and Per Hall, Ph.D.						
	Giovanna Gagliardi, Ph.D., Bruna (Richard Peto, F.R.S., Kazem	Gigante, Ph.D., Maj-Britt Jensen, M Rahimi, D.M., Carolyn Taylor, D.Pł				

Sarah C. Darby, Ph.D., Marianne Ewertz, D.M.Sc., Paul McGale, Ph.D., Anna M. Bennet, Ph.D., Ulla Blom. Goldman, M.D., Dorthe Branning, P.M., Gandage Gorras, M.D., David Gutter, E.B.C.P.

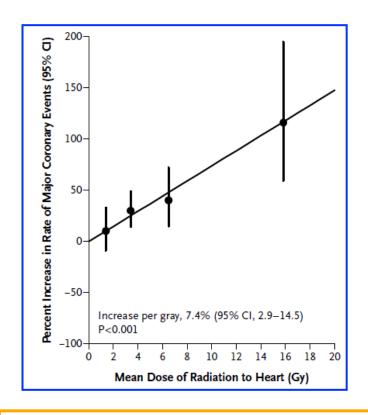
The NEW ENGLAND JOURNAL of MEDICINE

Population-based *case-control study*

Breast cancer (Swedish National Cancer Register and Danish Breast Cancer Cooperative Group), younger than 70 years at diagnosis, years:1958-2001.

- *Case: Major coronary events*: myocardial infarction, coronary revascularization, death from ischemic heart disease. Angina alone were not included
- *Control: Patients without major coronary events* (random selected, one per case patient in Sweden and two per case patient in Denmark)

Radiation Dosimetry: CT planning on the CT scan of a woman with typical anatomy; DVH for the whole heart and for the left anterior descending coronary artery

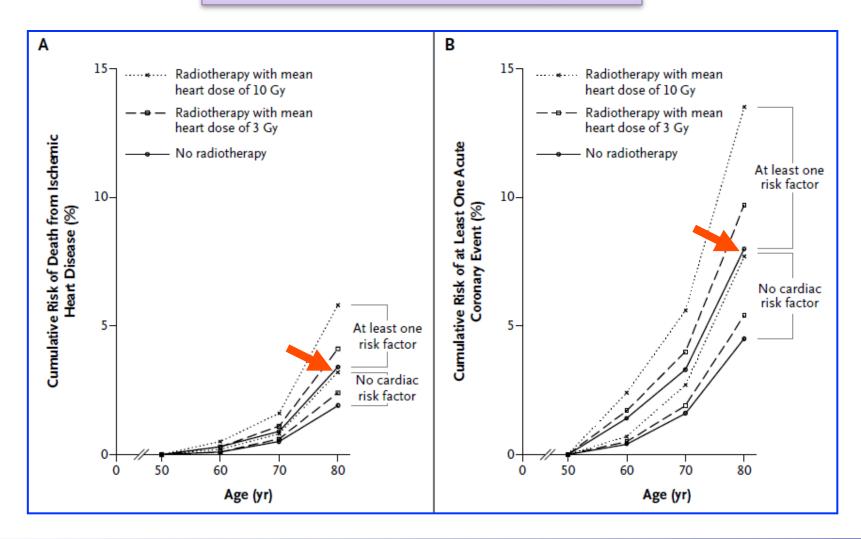

Tumor characteristic

Characteristic	No. of Case Patients (N=963)	No. of Controls (N=1205)	Rate Ratio	P Value†
Tumor characteristics				
Nodal status				0.06
Negative	482	610	1.00	
Positive	463	579	1.20	
Unknown	18	16	0.96	
Size				0.97
<2 cm	331	449	1.00	
2–5 cm	494	604	1.00	
Other or unknown	138	152	1.08	
Location				0.22
Outer quadrants	350	572	1.00	
Inner quadrants	114	204	0.84	
Other or unknown	499	429	0.82	
Laterality of breast cancer				0.002
Right	420	604	1.00	
Left	543	601	1.32	

Risk Factors

Factors associated with subsequent coronary event				<0.001
No known cardiac risk factors	353	600	1.00	
History of ischemic heart disease	109	38	6.67**	
Risk factors other than ischemic heart disease††	458	527	1.96**	i i
Unknown	43	40	1.23	i i
History of circulatory disease other than ischemic heart disease‡‡				<0.001
No	536	845	1.00	1 1
Yes	265	269	1.88	1 1
Unknown	53	53	1.04	1 1
History of diabetes∬				<0.001
No	704	1056	1.00	
Yes	55	29	3.23	
Unknown	95	82	1.19	i i
History of COPD∬				<0.001
No	736	1076	1.00	
Yes	15	6	6.33	
Unknown	103	85	1.24	

Effect of radiotherapy

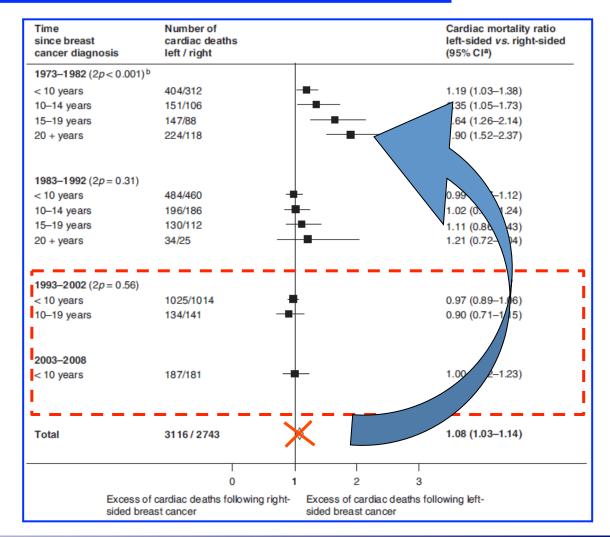

7.4% for each increase of 1 Gy in the mean radiation dose to the heart (P<0.001)

Increase continues for at least 20 years

Table 3. Percentage Increase in the Rate of Major Coronary Events per Gray,According to Time since Radiotherapy.

Time since Radiotherapy*	No. of Case Patients	No. of Controls	Increase in Rate of Major Coronary Events (95% CI)†
			% increase/Gy
0 to 4 yr	206	328	16.3 (3.0 to 64.3)
5 to 9 yr	216	296	15.5 (2.5 to 63.3)
10 to 19 yr	323	388	1.2 (-2.2 to 8.5)
≥20 yr	218	193	8.2 (0.4 to 26.6)
0 to ≥20 yr	963	1205	7.4 (2.9 to 14.5)

Effect of radiotherapy



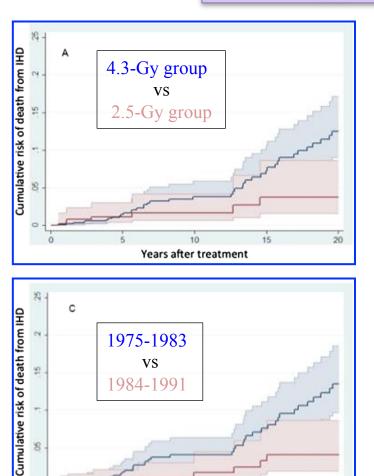
Radiation-related mortality from heart disease and lung cancer more than 20 years after radiotherapy for breast cancer

558.871 women recorded with breast cancer during 1973– 2008 in the SEER

Excess of cardiac deaths for women receiving RT at left-sided breast

RT after 1983 \rightarrow little evidence of any radiationrelated increase in heart disease mortality

Henson, K. E., (2013) British J Cancer 108, 179–182


Clinical Investigation: Breast Cancer

Long-term Cardiac Mortality After Hypofractionated Radiation Therapy in Breast Cancer

Two *fractionation patterns* of radiation therapy: 4.3 Gy x 10 fr or 2.5 Gy x 20 fr

1107 and **459** *eligible patients* in the 2 groups

Tjessem, K. H., (2013) IJROBP 87(2): 337-343

Years after treatment

1984-1991

8

Hypofractionation

20

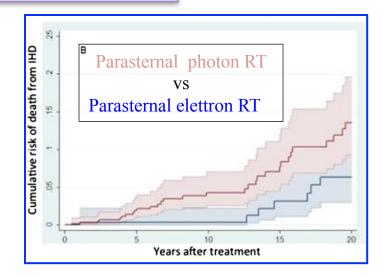
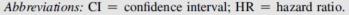
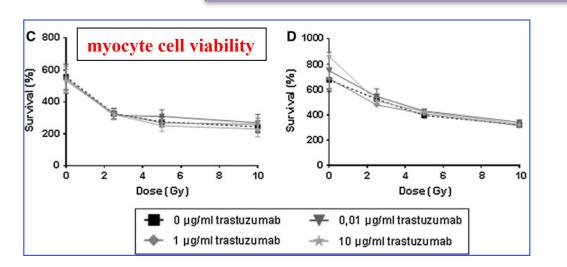



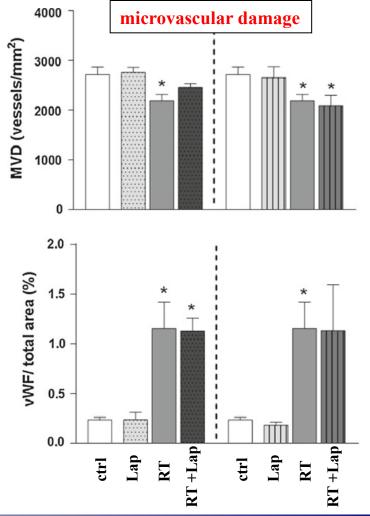
Table 4 Multivariate Cox regression analysis of treatment parameters and risk of death resulting from ischemic heart disease

	Isch	Ischemic heart disease		
Treatment variable	HR	95% CI	P Value	
4.3 Gy vs 2.5 Gy	2.90	0.97-8.76	.057	
Photon beams vs no parasternal radiation	0.70	0.26-1.88	.695	
Electron beams vs no parasternal radiation	0.34	0.11-1.04	.336	



Tjessem, K. H., (2013) IJROBP 87(2): 337-343

Radioterapia nel trattamento del carcinoma mammario e cardiotossicità


Un problema da quantificare

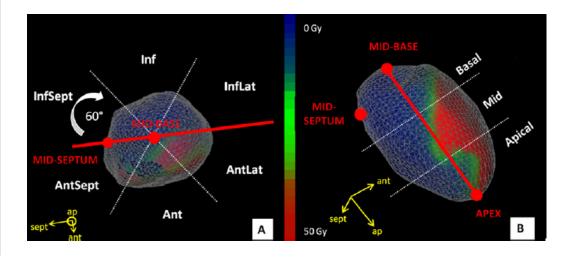
Influence of ErbB2 blocking agents

In combination with irradiation or anthracyclines:

Not decrease *myocyte cell viability* in vitro Not enhance *cardiac damage* in mice. Inhibit the *radiation-induced inflammatory* responses

Seemann I., (2013) Breast Cancer Res Treat 141: 385-395

Monitoring

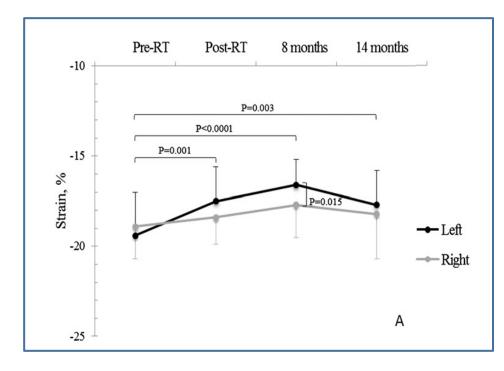

Echocardiography-SRI (strain rate imaging): detection of subclinical RT-induced cardiotoxicity

75 *women* (51 left-sided and 24 right-sided) receiving adjuvant RT to the breast/chest wall and regional lymph nodes

Table 2 Heart dose-volume and NTCP data				
	Left-sided	Right-sided		
Parameter	(n=51)	(n=24)		
Heart				
Mean dose (Gy)	9 ± 4	4 ± 4		
V ₃₀ (%)	7 ± 5	3 ± 4		
NTCP (%)	1.8 ± 1.7	0.8 ± 1.4		
Left ventricle				
Mean dose (Gy)	9 ± 4	1 ± 0.4		
V ₃₀ (%)	8 ± 7	0 ± 0		
Mean dose by location (Gy)				
Anteroseptal wall	14 ± 9	-		
Anterior wall	25 ± 14	-		
Anterolateral wall	15 ± 11	-		
Inferolateral wall	4 ± 3	-		
Inferior wall	3 ± 3	-		
Inferoseptal wall	5 ± 4	-		
Apical segments	10 ± 12	-		
Mid segments	11 ± 12	-		
Basal segments	12 ± 11	-		

Abbreviations: NTCP = normal tissue complication probability; V_{30} (%) = percent of total volume receiving 30 Gy. Data are given as mean \pm standard deviation. *Echocardio with SRI:* before RT, immediately after RT, and 8 and 14 months after RT

TnI levels: on the first and last day of RT

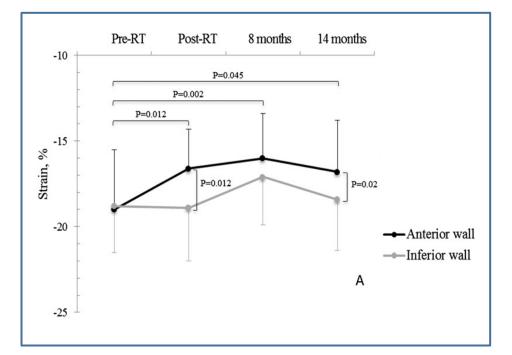


Erven, K., (2013) IJROBP 85(5): 1172-1178

Monitoring

Echocardiography-SRI (strain rate imaging): detection of subclinical RT-induced cardiotoxicity

No significant decrease in *conventional echocardiography* parameters for systolic or diastolic function in either left- or right-sided


A significant decrease in *SRI* for left-sided patients but not for right-sided patients

The largest decrease in SRI: 8 months after RT

Erven, K., (2013) *IJROBP* **85**(5): 1172-1178

Monitoring

Echocardiography-SRI (strain rate imaging): detection of subclinical RT-induced cardiotoxicity

SRI can identify *reductions in LV function* **immediately after RT** that are not detectable by conventional echocardiographic Strain in the anterior segments was *significantly decreased* at all post-RT time

For inferior segments *no significant changes* after RT

Univariate analysis

No significant correlations with use of trastuzumab, cardiac risk factors.

Only a **nearly significant** with the maximal LV dose.

Erven, K., (2013) IJROBP 85(5): 1172-1178

Volume delineation

Heart contouring variations

Danish consensus on delineation of CTVs and OARs in adjuvant breast RT

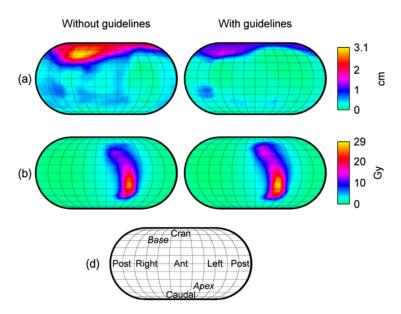
Heart contouring atlas: Feng M, et al . Int J Radiat Oncol Biol Phys 2011; 79: 10 – 8

Dice similarity coefficient (DSC): to evaluate the delineation agreement before and after the consensus

Volume	Consensus volume (ml)	Mean DSC (range) Before consensus	Mean DSC (range) After consensus
Breast	1247	0.93 (0.89-0.96)	0.95 (0.93-0.96)
Boost	40	NA	0.75 (0.60-0.89)
Internal mammary LN	15	0.59 (0.32-0.72)	0.71 (0.63-0.81)
Axillary LN level I	108	0.65 (0.59-0.75)	0.70 (0.60-0.77)
Axillary LN level II	32	0.56 (0.35-0.69)	0.76 (0.67-0.84)
Axillary LN level III	17	0.56 (0.39-0.73)	0.74 (0.66-0.82)
Periclavicular LN	47	0.41 (0.34-0.56)	0.56 (0.43-0.73)
Interpectoral LN	33	0.54 (NA)	0.66 (0.55-0.78)
Heart	731	0.91 (0.88-0.94)	0.94 (0.90-0.96)

Table III. Mean and ranges of DSC before and after consensus.

Guidelines improve inter-delineator agreement


Nielsen M.H., (2013) Acta Oncologica; 52: 703–710

Volume delineation

Heart and left anterior descending coronary artery

Nine observers from five centres delineated the heart and LADCA on 15 patients

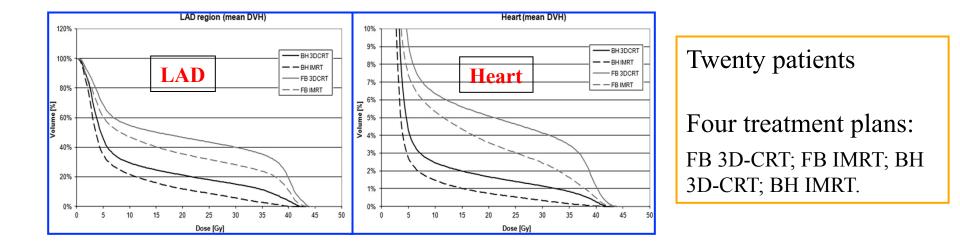
The delineations were carried out twice, first without guidelines and then with a set of common guidelines

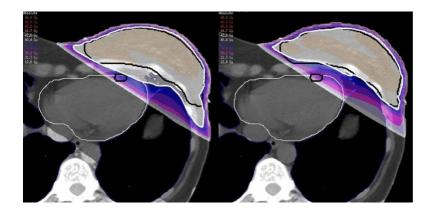
Major inter-observer variation **at the base of the heart**.

Estimated dose: modest interobserver variation.

Guidelines significantly *reduced the variation* in heart delineations

Dose to the **LADCA** was subject to major variation, not reduced by guidelines.


Lorenzen E.L., (2013) Radiotherapy and Oncology 108: 254–258

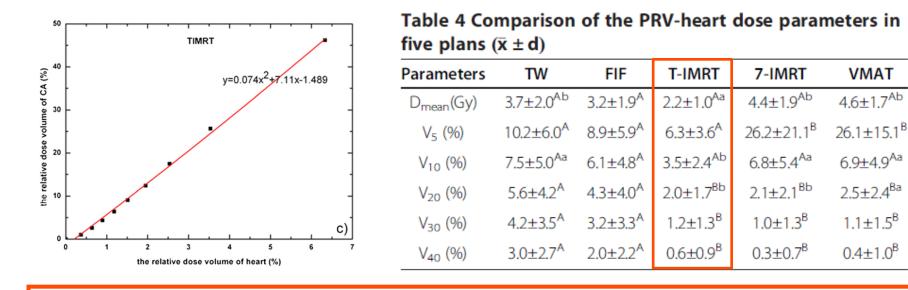

Radioterapia nel trattamento del carcinoma mammario e cardiotossicità

Un problema da evitare

RT techniques

IMRT and DIBH

DIBH in left-sided breast cancer RT leads to a *significant dose reduction* in the *heart* and the *LAD-region*


IMRT enables an *additional dose reduction* in these critical organs

Mast M.E., (2013) Radioth Oncol; 108: 248–253

RT techniques

IMRT techniques (only for small breast)

20 patients; 5 different radiotherapy techniques: TW, FIF, T-IMRT, 7-IMRT, VMAT

T-IMRT reduced radiation dose exposure to heart

VMAT is *not recommended* for left-sided breast cancer treatment

DVH of the heart can be used to *predict DVH of the coronary artery*

Jin J.H., (2013) Radiation Oncol; 8: 89-253

Radioterapia nel trattamento del carcinoma mammario e cardiotossicità

Un problema reale

Fractionation, Volumes, Other risk factors

Da quantificare

Early diagnosis, dose evaluation accuracy

Da evitare

New techniques \rightarrow clinical impact \rightarrow clinical governance