Imaging and interpretation of radiobiological processes

Marco Ravanelli, Roberto Maroldi marcoravanelli@hotmail.it

Imaging and biology

ROBERT LANZA, MD with Bob Berman

Imaging*target matrix

Biological targets

Imaging "weapons"

• PET:

— FDG	Direct
– MISO	Direct
— FLT	Direct

- MRI:
 - DCE/perfusion MRI
 - DWI
 - IVIM DWI

dynamic relaxivity contrast enhanced MRI (DCE-MRI)

- noninvasive quantitative method
- investigates microvascular structure and function by tracking the pharmacokinetics of injected Gd contrast agents as they pass through the tumour vasculature
- the technique is sensitive to alterations in
 - vascular permeability (Ktrans)
 - extracellular extravascular volume (ve, Fis)
 - vascular volume (BV)
 - blood flow (BF)

Blood fow

DWI-MRI \rightarrow tissue cellularity, extracellular space tortuosity, and integrity of cellular membranes

- water motion in tissues → modified by
 - flows within conduits (for example, blood vessels, glandular ducts, etc.);
 - interactions with cellular components (hydrophobic phospholipid-containing cellular membranes, intracellular organelles, and macromolecules)
- DW "made" sensitive to large/small displacements of water:
 - − Large \rightarrow macroscopic flows (low b-values <50–100 s/mm²),
 - Small → microscopic extracellular space/intracellular water displacements (high b-values)
- DW gradients to standard T2-w sequences (b-values)
- ADC measures water motion restriction (high ADC → low restriction; low ADC → high restriction)

DWI IVIM

- DWI signal is influenced by
 - a fast component due to arteriolar blood flow [Lemke et al 2009]
 - A slow component due to interstitial water diffusion
- Biexponential analysis of DWI signals allows perfusion- from diffusion-effect to be separated
- Perfusion is described by *f* (perfusion fraction) and
 *D** (pseudodiffusion coefficient)

IFP

- Largely variable in all histologies
- Cervical cancer has been the most studied human model, followed by head and neck cancer
- Studies in vivo on human melanoma, cervical and breast cancer xenografts

Tumor type	n	Mean	Range	
Normal skin	5	0.4	-1.0 to 3.0	
Normal breast	8	0.0	-0.5 to 3.0	
Head and neck carcinomas	27	19.0	1.5 to 79.0	
Cervical carcinomas	127	20.5	-2.8 to 94.0	
Lung carcinomas	26	9.5	1.0 to 27.0	
Metastatic melanomas	26	18.0	0.0 to 60.0	
Breast carcinomas	21	23.7	4.0 to 53.0	
Brain tumors	28	4.6	-0.5 to 15.0	
Rectal carcinoma	8	15.3	12.1 to 15.8	
Colorectal liver metastasis	8	21.0	6.0 to 45.0	
Lymphomas	7	4.5	1.0 to 12.5	
Renal cell carcinoma	1	38.0	-	

IFP

Links with angiogenesis and hypoxia:

- + correlation between IFP and central hypoxic fraction
- + correlation between IFP and peripheral MVD (CD31)
- Critical IFP level: 20
 mmHg

IFP

- Correlation with radiocurability in xenografts: TCD₅₀
 20% higher in high IFP (>8 mmHg) [Rofstad et al 2009]
- Correlation with radiocurability in xenografts without hypoxia: TCD₅₀ 13% higher in high IFP [Rofstad et al 2010]
- \rightarrow hypoxia related and non-related effects
- Prognostic factor in cervical cancer [Fyles 2006; Yeo 2009; Hockel 1996 and 1999; Lyng 2000; Knocke 1999]
- Benefit from cisplatin addition to RT in high IFP cervical cancer [Milosevic et al 2014]

Hompland et al 2014

IVIM DWI \rightarrow IFP

• IFP correlates with IVIM metrics in a mouse mammary carcinoma model

- Microvessel permeability (Ktrans) is inversely correlated to IFP [Hompland et al 2013; Haider et al 2007]
- As suggested also from IVIM studies, high IFP neg affects perfusion and oxygenation of tumor
- Mathematical models suggest possible role of antiangiogenetic drugs in normalizing interstitial hypertension [Jain et al 2007] → association with radiotherapy?

DCE→peritumor edema

- Peritumoral interstitial fluid flow velocity measured by DCE-MRI predicts survival in cervical carcinoma (62 pts)
- Velocity of outward expansion of peritumoral enhancement

<section-header>

IVIM→peritumor edema

tumor hypoxia

Direct

- <u>acute</u>: perfusion-related
- <u>chronic</u>: diffusion-related, increased diffusion distance more than 70-100 μm
- Promotes angiogenesis, adaptation and immortalization via HIF-1

cyclic hypoxia (pre-clinical)

- <u>cyclic acute</u>: cyclic fluctuations in tumor oxygenations given by acute hypoxic followed by reoxygenation phases;
- <u>hypoxic phases</u>: HIF-1 α accumulation in endothelial cells;
- <u>reoxygenation phases</u>: signalling cascade leading to phenotypic changes, genome instability.
- incremented angiogenesis
- increased metastatisation
- immortalization

 increment of cancer stem cells (CSC) population

acute cyclic hypoxia (in vivo)

- *In vivo,* acute cyclic but not chronic hypoxia induced increased metastatisation [Cairns et al 2001]
- acute cyclic hypoxia enhances angiogenesis [Gaustad et al 2013]
- tumors exposed to acute hypoxia are more radioresistant than chronicall hypoxic tumors [Denekamp et al 1999]
- chronic and cycling hypoxia differently affect different hystotypes [Ellingsen et al 2012]

need for techniques capable to measure hypoxia and separate acute cyclic from chronic hypoxia

hunting for hypoxia

- oxygen probes (computerized pO2 histography) demonstrated that hypoxia is not dependent on size, stage, histology and grade in uterine cervix cancer. [Vaupel et al 2001]
- hypoxic areas are heterogeneously distributed in the tumor [Vaupel et al 2004].

whole tumor individual assessment (imaging)

Optimal (imaging?) technique

- Quantitative: effectiveness of different therapies becomes impaired at different pO2 levels [Hockel et al 2001], 0-15 mmHg level seems to be critical.
- Sensitive to small pO2 changes.
- **Specific:** Direct on hypoxia or on specific hypoxia effects.
- Able to separate chronic, acute/cycling hypoxia and anoxic necrosis.
- Able to image the whole tumor (not only superficial tumors).

possible strategies

assessment of tumour oxygenation

Direct

Surrogate

- pO2 measurement
- oxygenation-dependent biological pathways
- assessment of hypoxia phenotypes
 - perfusion assessment

PET world Direct

- Nitroimidazole based: ¹⁸FMISO (FDA approved), ¹⁸FAZA, ¹⁸FETA etc.
- Etanidazole based: EF3-EF5
- ⁶⁴Cu ATSM (FDA approved): higher signal to background ratio, 12h half-live
- HX4: most promising
- FDG: <u>non specific</u>.
 FDG uptake <u>does not correlate</u> with hypoxia specific stainings/tracers uptake.

F-18–fluoromisonidazole (F-MISO PET)

- most commonly used radiotracer in hypoxia imaging;
- misonidazole passively diffuses into the cells:
 - in the presence of oxygen, the last reaction is reversible and the molecule can leave the cell,
 - in absence of oxygen, misonidazole is reduced and remains trapped in the cell.
- also an efficient hypoxic radiosensitizer;

¹⁸F MISO PET

- No differentiation between chronic and acute cycling hypoxia
- Seems to be affected by both [Monnich et al 2012]

Hypoxia/metabolism geographical mismatch

- HX4 PET on 20 head and neck cancer patients
- 13/20 hypoxic
- Hypoxic usually smaller than metabolic subvolumes (51%±26%)
- In 9/13 25%±21% of hypoxic subvolume was outside metabolic subvolume
- → FDG PET cannot be used as surrogate of hypoxia imaging
- Similar results on NSCLC [Zegers et a 2014]

Zegers et al 2015

Hypoxia (t)

MR world Direct

- Electron paramagnetic resonance imaging (EPRI) and Overhauser MRI (OMRI): measures redox
 - status of injected nitroxides or trytil radical, determined by tissue molecular oxygen
- High temporal resolution allows detection of cyclic hypoxia

MRI world Surrogate

- BOLD MRI (usable in clinics):
 - <u>does not measure pO2</u> (no linear relation), but deoxyhemoglobin concentration
 - <u>flow-dependent</u> \rightarrow sensitive to acute hypoxia
 - <u>flow-dependent</u> \rightarrow influenced by regional blood flow
 - <u>relatively insensitive to chronic hypoxia</u> (occurring in nonflowing blood regions)
 - Poor quantitative correlation with pimonidazole staining

DCE MRI

• Correlatin with hypoxic fraction and radioresponsiveness in cervical carcinoma xenografts

Ellingsen et al 2014

DCE MRI Surrogate

- Data confirmed in vivo on xenografts by several studies
- Except: poor correlation in rectal cancer [Atkin et al 2006; Kim et al 2013]
- Correlation between DCE MRI and hypoxia markers in humans is emerging in:
 - cervical cancer [Halle et al 2012]
 - prostate cancer [Borren et al 2013]
 - gliomas [Jensen et al 2014]

Hypoxia imaging

- Prediction and prognostic risk stratification:
 - FMISO: Sato et al 2014 (H&N), Trinkaus et al 2014 (H&N), Zips et al 2013 (H&N), Hugonnet et al 2011 (kidney) Rischin et al 2006 (H&N), Eschmann et al 2005 (NSCLC)

- DCE MRI: Jensen et al (gliomas), Halle et al 2012 (cervix), other studies but without hypoxia specific evaluation
- Promising results for objective response and progression-free survival, not for overall survival

Angiogenesis

- MVD (CD31) the most used marker
- Radiosensitivity: high MVD associated with higher radiosensitivity in early laryngeal cancer [Kamijo et al 2000] and metastatic cervical lymph nodes from HNSCC [Ito et al 2011]
- Outcome (MVD, multimodal treatment): no correlation with outcome in HNSCC [Calvin et al 2007; Foote et al 2005], poor prognostic factor in breast cancer [metaanalysis, Uzzan et al 2004; Gasparini et al 2001], renal cancer [metaanalysis, Cheng et al 2014; Zhang et al 2014] and CRC [Des Guetz et al 2006]

MVD seems to be positively correlated with radiosensitivity and poor prognosis!!!
 ______ REVIEW ______

Clinical Application of Antiangiogenic Therapy: Microvessel Density, What It Does and Doesn't Tell Us

Lynn Hlatky, Philip Hahnfeldt, Judah Folkman

- MVD describes number of vessels per hotspot but not vessel funcion neither angiogenetic activity
- Furthermore, microvascular heterogeneity must be taken into account

DCE-MRI

• Non pharmakokinetic quantitative analysis (highly enhancing pixel fraction at 60 sec), 85 pts, advanced cervical cancer

- Similar results (K_{trans}) confirmed in other studies [Mayr et al 2011]
- DCE-MRI provides information about vascular function, correlating with angiogenetic activity

Lund et al 2015

DWI→Cell proliferation

• 93 NSCLC, pre treatment DWI, ADC min

- (Known correlation with cell density)
- Also observed in breast cancer [Molinari et al 2015]

Direct FLT PET \rightarrow proliferation

- Thymidine salvage way (DNA precursors supply)
- Dependent on TK1 activity (late G1-S phase)
- Non linear and heterogeneous relationship with cell proliferation
- Correlation demonstrated in:
 lung cancer, B-lymphoma, skin cancer
 but not in: CRC, neuroblastoma and [18F]-FLT
 several xenograft models
- Prognostic prediction in high grade glioma [Idema et al 2012] et lymphoma [Hermann et al 2011]

extracellular space

McKnley et al 2013; Zhang et al 2012

FLT-PET \rightarrow repopulation

- Yue et al (2010) demonstrated increase FLT uptake in 2 pts after RT interruption
- Everitt et al (2009) observed a 'flare' of 18F-FLT uptake in NSCLC following only 2 Gy irradiation
- Fatema et al (2013) demonstrated gradual increase of FLT uptake in HNSCC xenografts since 6 hr after treatment

Necrosis/apoptosis

- Possible biomarker of treatment efficacy
- Early assessment with DWI during treatment.
- Rationale for DWI is increase water diffusivity due to cell membrane rupture
- Increase in ADC during treatment is sign of response
- ADC changes <10-15% are *technically* non significant because of low test re-test repeatibility

DWI during-Chemo-RT & post-ChemoRT

early PET CT SE 83% SP 54%

reference	year	type	pts	т	Ν	time
Vandecaveye	2010	pro	30	Δ ADC> 14%	Δ ADC> 14,6%	2 weeks
				SE 88% SP 91%	SE 80% SP 89%	
				Δ ADC> 25%	Δ ADC> 19%	4 weeks
				SE 100% SP 91%	SE 80% SP 96%	
King		20	ADC < 1,43 ×10 ⁻³ mm ² /s		6 weeks post	
	Δ.	> 55%	(50)	SE 45% SP 100%		treatment end
Kim	2009	pro	33	A > 110/	ADC < 1.11	pre Tx
				$\Delta > 1170$	SE 65% SP 86%	
Vandecaveye	2007	pro	26	ADC > 1,3 ×10-3 mm2/s		post treatment
				SE 94% SP 95%		end
Razek	2006	pro	32	ADC < 1,3 ×10-3 mm2/s		post treatment
				SE 84% SP 90%		end
Kato	2009	retro	28	ADC correlates with		pre treatment
				regression rate (r -0.37)		

- Strong prognostic variable in lung adenocarcinoma [Maeshima 2002], gastric cancer [Wu 2013], triple-negative breast cancer [Moorman 2012]
- Complex interactions with angiogenesis, hypoxia, immunity
- Complex and debated role in radiosensitivity [Ogawa et al 2007]

DCE CT and tumor stroma

- Fis describes contrast accumulation in the interstitium
- Strong dependence on tumor histotype

DWI and tumor stroma

- Heterogeneous results
- Heterogeneous histology: collagen-dominant, fibroblastsdominant, lymphocyte-dominant
- Possible role for direct targeting with PET [Blykers 2015]

Breast ER+ cancer [Ko et al 2014]

Tumor heterogeneity

- Inter-tumor heterogeneity
- Intra-tumor heterogeneity (multiclonality, stochastic genetic or epigenetic events, microenvironmental pressure fluctuations)
- Heterogeneity among tumor and its metastases

The Lombrosian hypothesis

- Imaging depicts tumor heterogeneity at phenotypic level
- Phenotypic tumor heterogeneity reflects genetic, epigenetic, microenvironmental heterogeneity
- Genetic, epigenetic, microenvironmental heterogeneity influences treatment response
- ightarrow imaging can predict treatment response

DWI heterogeneity in OPSCC

- 27 pts with advanced oropharyngeal cancer treated with CHT-RT
- Histogram analysis on DWI before treatment
- ADC skewness and max on T correlated with prognosis (skew*max had RR=15.45 for OS, p<0.0001)
- Critical issues:
 - repeatibility
 - tumor segmentation

CT heterogeneity in NSCLC

- Retrospective study on 53 pts with advanced NSCLC
- Texture analysis on *pretreatment* contrast-enhanced CT
- CT density and Uniformity predicted objective response to CHT
- Possible patient stratification

Ravanelli et al 2013

filtration-histogram approach (literature overview)

- Colorectal cancer: hepatic CT on portal phase-baseline [Ganeshan et al 2007]
- Breast cancer: MR-early assessment [Parikh et al 2014]
- Oesophageal cancer: unhenanced CT-baseline [Ganeshan et al 2012]
- NSCLC: unhenanced CT-baseline [Ganeshan et al 2012];
 NSCLC: contrast-enhanced CT-baseline [Ravanelli et al 2013]
- Renal cancer: contrast enhanced CT-early assessment (antiangiogenetic drugs) [Goh et al 2011]
- H&N: contrast enhanced CT-baseline [Zhang et al 2013]

CT heterogeneity in CRC liver mets

- 23 pts CHT + bevacizumab, 20 pts CHT
- Texture analysis on *pre-treatment* contrast-enhanced CT
- Correlation with objective response, PFS and OS
- In pts treated with bevacizumab, high uniformity correlated with poor response rate and prognosis (OR=20 for objective response RR=5.1 for PFS, 6.7 for OS)
- No correlation in pts treated by CHT alone
- → Selection of pts who would benefit from addition of bevacizumab to CHT avoiding overtreatment

Ravanelli et al ECR 2015

Final considerations

- Imaging insights in tumor biology
- Imaging reflects on large mm-scale the tumor phenotype resulting from complex interactions of several micro/nano scale factors
- Evidence on xenografts are quite strong but strongly dependent on histotype
- Standardization of techniques and large studies are needed in humans
- What does it mean? \rightarrow Does it works?

Thank you

JOINT MEETING 1* ADVANCED AIRB COURSE IN RADIOBIOLOGY BRESCLA MEETINGS IN RADIATION ONCOLOGY - 2015 EDITION

THE POWER OF BIOLOGY Brescia – October 8th/9th, 2015

BIOCENTRISM

How Life and Consciousness are the Keys to Understanding the True Nature of the Universe

ROBERT LANZA, MD with Bob Berman

ROBERT LANZA, MD with Bob Berman

