

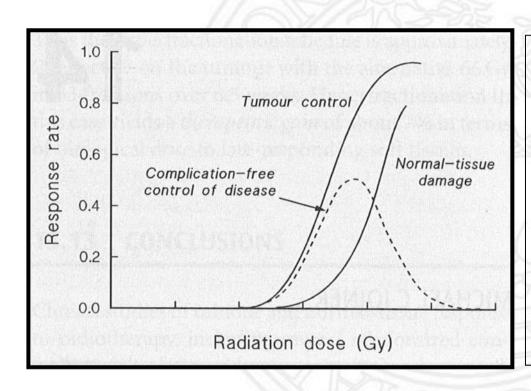
XXV Congresso Nazionale AIRO Rimini 7-10 Novembre 2015

La gestione degli effetti tardivi da radioterapia

Pierfrancesco Franco, MD

Department of Oncology, Radiation Oncology University of Torino School of Medicine Turin, Italy

Oral cavity tumors


- ✓ Most of pts with oral cavity tumor have stage III-IVa disease
- ✓Surgery + radiotherapy + chemotherapy for resectable disease
- ✓ Post-op RT-CT increases LRC, DFS for highrisk features pts (R1 and N+ with ECE +)
- ✓ RT-CT is a selected alternative for locally advanced disease

Uncomplicated local tumour control rate

as a bell-shaped curve

- ✓ Increasing total dose: not only tumour control rates but also incidence/severity of normal-tissue damage rises
- ✓ ULTC probability initially increases with total dose but then falls because of normal-tissue toxicity
- ✓Once the optimum, further improvements in ULTC rate needs shifts TCP to lower doses or NTCP to higher doses

Cogent in head and neck cancer

Holthusen H, Strahlentherapie 1936

Acute toxicity

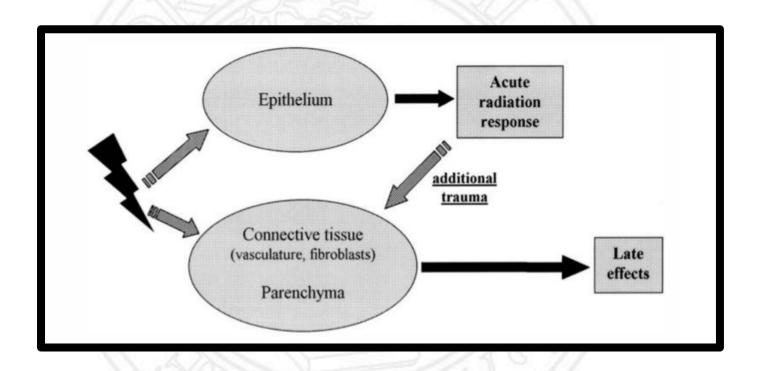
- ✓ Occurring during or within few weeks after completion of RT
- ✓Involves tissues with high cell turnover rate (mucosal membranes, skin)
- ✓ Usually transient
- √ Has a high α/β ratio
- ✓ Depends mainly on total nominal dose rather than dose per fraction

Late toxicity

- ✓ Occurring after few months or year after RT
- ✓ Involves tissues with slow cell turnover rate
- ✓ Microenvironment, stroma and vessels
- √ Has a low α/β ratio
- ✓ Depends on fraction size
- √ Usually persistent and progressive

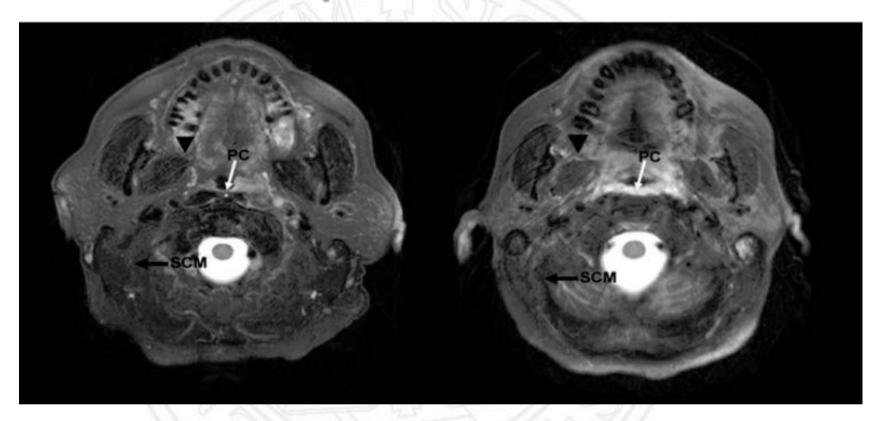
Challeges in defining late toxicity

- ✓ Late effects are underscored and underreported
- √ Selection of clinically relevant outcomes
- ✓ Non uniform grading/scoring of late effects
- ✓ Multi-modality treatment
- √ Tumor and host factors may interact with therapy


Consequential late effects

- ✓ Severe early toxicity may be causally related to subsequent late effects
- ✓ Both phases are manifestations of an ongoing sequence of events initiated immediately after injury
- ✓ Autocrine, paracrine, endocrine messages resulting in dysregulation of tissue microenvironment

Consequential late effects

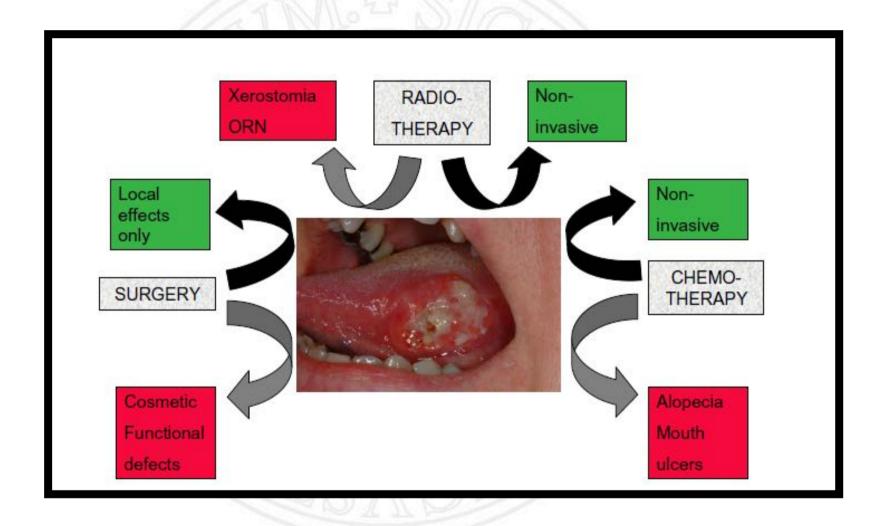


Dorr et al; R&O 2001

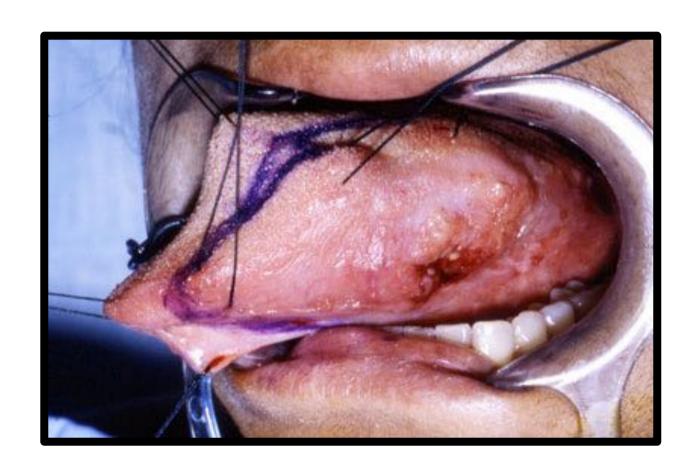
Consequential late effects

Severe acute mucositis is a surrogate risk-index for long-term dysphagia

Toxicity in oral cavity and oropharyngeal cancer


- √ Mucositis
- ✓ Xerostomia
- ✓ Dysphagia
- ✓ Osteradionecrosis
- √ Rampant caries/ dental disease
- √ Skin toxicity
- ✓ Burining and pain

Bernier J; Head and Neck Cacer: multimodality management


Combined modality treatment for oral cavity tumors

SURGERY

Oral and oropharyngeal surgery

- ☐ Floor of the mouth resection has impact on swallowing if:
 - ✓ Geniohyoid or mylohyoid muscles are resected (elevation and antero-pulsion of the larynx)
 - √ Type of reconstruction
 - Primary closure (less pharyngeal residue)
 - Distal myocutaneous flap (pectoralis major, latissimus dorsi, trapezius)
 - Free microvascular flap (fasciocutaneous forearm, lateral thigh, lateral arm, scapular

- Oropharyngeal swallowing is a pump: tongue is a piston and pharynx is a dinamic chamber
- Flaps are adynamic segments which reduce swallowing efficacy

Oral and oropharyngeal surgery

- ☐ Oral tongue resection has impact on swallowing:
 - ✓ Slows oral transit (worse with viscous bolus)
 - ✓ Aspiration rate increases with incresed % of resected tongue
 - ✓ In small resection (< 30%) of oral tongue or tongue base: primary closure
 - ✓ Wider resections: flaps

TORS

Oral and oropharyngeal surgery

■ Mandibular resection:

- Marginal resection: small impact on swallowing
- Mandibulotomy can damage:
 - Genioglossus muscles (sagittal mandibulotomy)
 - Inferior alveolar nerve (lateral mandibulotomy)
 - Occlusion (dysphagia due to loss of stability during swallowing and larynx elvation)

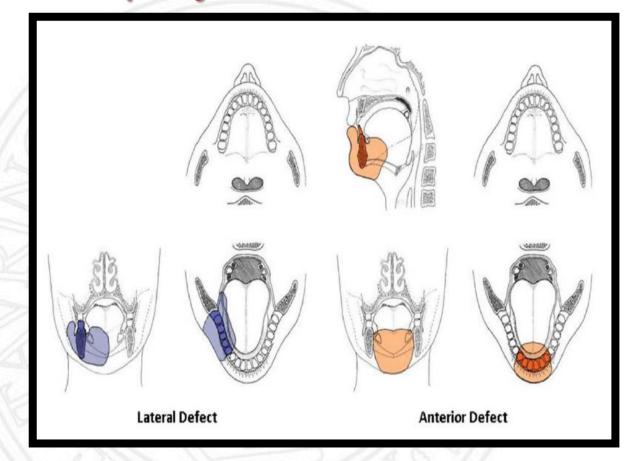
Reconstruction of the mandible recommended if:

- Large mandibular defects (> 5 cm)
- ➤ Large soft tissue deficit associated
- > RT is planned

Teeth and dentures

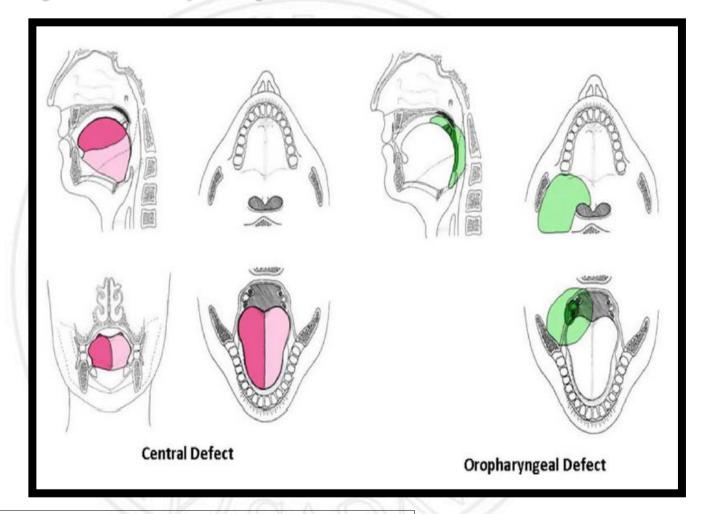
Important for

- Jaw stabilization (posterior teeth occlusion)
- Suprahyoid muscles can pull forward and anterior the larynx


Edentulus pts

- Higher risk of laryngeal penetration (no apiration)
- Penetration 4 x risk of pneumonia
- Prostheses useful (after mucositis)

Oral cavity and oropharynx: 4 anatomical functional subsites


- Lateral: lateral floor of the mouth; mandibular body; buccal cavity
- Anterior: anterior floor of the mouth; inter canine segment of the mandible; labial vestibule

Kalavredzos et al; Oral Oncol 2010

Oral cavity and oropharynx: 4 anatomical functional subsites

- > Central: hemi- ot total tongue
- Oropharyngeal: retromolar trigone, soft palate and tonsillar fossa area

Kalavredzos et al; Oral Oncol 2010

FOIS: Functional Oral Intake Score

FOIS GRADE	INTAKE DESCRIPTION
1	Nothing by mouth
2	Tube dependent with minimal attempts of food or liquid
3	Tube dependent with consistent oral intake of food or liquid
4	Total oral diet for a single consistency
5	Total oral diet with multiple consistencies, but requiring special
6	preparation, but with specific food limitations
	Total oral diet with multiple consistencies without special
7	preparation but with specific food limitations
	Total oral diet with no restrictions

Reconstruction: frequently with free tissue transfer rather than regional pedicled flaps

Dysphagia: extent and nature depends on

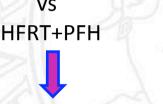
Tumor site and size rather than reconstruction used

Post-operative treatment may damage swallowing more
 Central or anterior defects have worse swallowing outcomes at 4 months compared to lateral and oropharyngeal defects (more FOIS reduction compared to baseline)

Schache et al; Oral Oncol 2009

CHEMOTHERAPY

"Sequential approach" improve outcomes?


ICT before a "lighter" CRT be better or more tolerable?

3vs- OS: 73% vs 78%

No difference OS

> GORTEC (III-IV)

CR rates: 21% vs 51%

Median PFS 19.7 vs 30.4; OS 33.3 vs 39.6

Benasso et al, Oral Oncol 2013

VOLUME 31 · NUMBER 6 · FEBRUARY 20 2013

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Randomized Phase III Trial of Induction Chemotherapy With Docetaxel, Cisplatin, and Fluorouracil Followed by Surgery Versus Up-Front Surgery in Locally Advanced Resectable Oral Squamous Cell Carcinoma

Lai-ping Zhong, Chen-ping Zhang, Guo-xin Ren, Wei Guo, William N. William Jr, Jian Sun, Han-guang Zhu, Wen-yong Tu, Jiang Li, Yi-li Cai, Li-zhen Wang, Xin-dong Fan, Zhong-he Wang, Yong-jie Hu, Tong Ji, Wen-jun Yang, Wei-min Ye, Jun Li, Yue He, Yan-an Wang, Li-qun Xu, Bo-song Wang, Merrill S. Kies, L. lack Lee, Leffrey N. Myers, and Zhi-yuan Zhano

- ✓ Locally advanced resectable oral cavity tumors
- √ TPF x 2 cycles (DDP 75 mg/m² d1 + Docetaxel 75 mg/m² d1+ 5-FU
 7500 mg/m² d1-5 infusion q 21) + surgery vs surgery upfront
- ✓ Post-operative RT if high-risk featured in both groups (54-66 Gy)
- ✓ Mean FU time: 30 months
- ✓ No advantage in OS and DFS
- ✓ Pts with favourable pathological response to ICT (≤ 10 vuable cells) had better OS

Zong et al; JCO 2013

VOLUME 31 - NUMBER 6 - FEBRUARY 20 2013

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Randomized Phase III Trial of Induction Chemotherapy With Docetaxel, Cisplatin, and Fluorouracil Followed by Surgery Versus Up-Front Surgery in Locally Advanced Resectable Oral Squamous Cell Carcinoma

Lai-ping Zhong, Chen-ping Zhang, Guo-xin Ren, Wei Guo, William N. William Jr, Jian Sun, Han-guang Zhu, Wen-yong Tu, Jiang Li, Yi-li Cai, Li-zhen Wang, Xin-dong Fan, Zhong-he Wang, Yong-jie Hu, Tong Ji, Wen-jun Yang, Wei-min Ye, Jun Li, Yue He, Yan-an Wang, Li-qun Xu, Bo-song Wang, Merrill S. Kies, J. Jack Lee, Jeffrey N. Myers, and Zhi-yuan Zhang

	Experimental Arm								Contro	ol Arm						
Event	Grade 1		Grade 2		Grade 3		Grade 1		Grade 2		Grade 3					
	No.	%	No.	%	No.	%	No.	%	No.	%	No.	%				
Induction chemotherapy																
Hematologic toxicity	18	14.8	9	7.4	8	6.6		-		-	-	-				
Diarrhea	11	9.0	6	4.9	1	0.8	-		-		-	-				
Alopecia	83	68.0	3	2.5	0	0	-		-		_	-				
Nausea and/or vomiting	66	54.1	2	1.6	0	0	_		_		_	_				
Altered liver function tests	19	15.6	5	4.1	0	0	_		_		_	_				
Febrile neutropenia	_		_	_	2	1.6	_	2.5	_	2.5						
Postoperative radiotherapy																
Oral mucositis	38	34.2	44	39.6	7	6.3	41	36.3	43	38.1	7	6.				
Trismus	28	25.2	35	31.5	6	5.4	33	29.2	34	30.1	6	5.3				
Dermatitis	31	27.9	41	36.9	5	4.5	29	25.7	38	33.6	4	3.				
Dysphagia and odynophagia	25	22.5	29	26.1	6	5.4	26	23.0	31	27.4	6	5.				

Zong et al; JCO 2013

original articles

Annals of Oncology

Annals of Oncology 25: 462–466, 2014 doi:10.1093/annonc/mdt555 Published online 8 January 2014

Preoperative chemotherapy in advanced resectable OCSCC: long-term results of a randomized phase III trial

P. Bossi¹, S. Lo Vullo², M. Guzzo³, L. Mariani², R. Granata¹, E. Orlandi⁴, L. Locati¹, G. Scaramellini³, C. Fallai⁴ & L. Licitra¹

¹Head and Neck Cancer Medical Oncology Unit; ²Clinical Epidemiology and Trial Organization Unit; ³Otorhinolaryngology Unit; ⁴Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Turnori, Milan, Italy

- ✓ Advanced resectable oral cavity tumors
- ✓ PF x 3 cycles (DDP 100 mg/m2 + 5-FU 1000 mg/m2 over 120 h
 infusion q 21) + surgery vs surgery upfront (T2-T4, N0-N2)
- ✓ Post-operative RT if high-risk featured in both groups
- ✓ Mean FU time: 11.5 years
- ✓ No advantage in loco-regional control, distant metastasis and death rate
- Pts with pCR had better OS

Bossi et al; Ann Oncol 2014

original articles

Annals of Oncolog

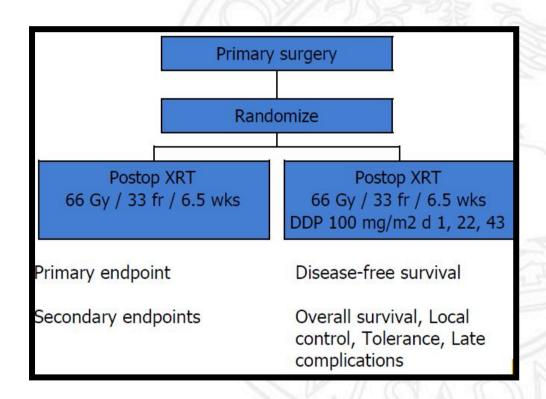
Annals of Oncology 25: 462–466, 2014 doi:10.1093/annonc/mdt555 Published online 8 January 2014

Preoperative chemotherapy in advanced resectable OCSCC: long-term results of a randomized phase III trial

P. Bossi¹, S. Lo Vullo², M. Guzzo³, L. Mariani², R. Granata¹, E. Orlandi⁴, L. Locati¹, G. Scaramellini³, C. Fallai⁴ & L. Licitra¹

¹Head and Neck Cancer Medical Oncology Unit; ²Clinical Epidemiology and Trial Organization Unit; ³Otorhinolaryngology Unit; ⁴Radiotherapy Unit, Fondadone IRCCS

	Chemothe (%)	rapy arm	Control ar	m (%)
	Grade 1	Grade 2	Grade 1	Grade 2
Dysphagia	29	5	29	14
Fibrosis	10	12	33	7
Xerostomia	5	1	5	1
Mucositis	2	1	1	1


- ✓ Pts with minum 60-month FU time
- ✓ Lower fibrosis rate (cumulative incidence: 22% vs 40%) and G2 dysphagia (cumulative incidence: 5% vs 14%)

Bossi et al; Ann Oncol 2014

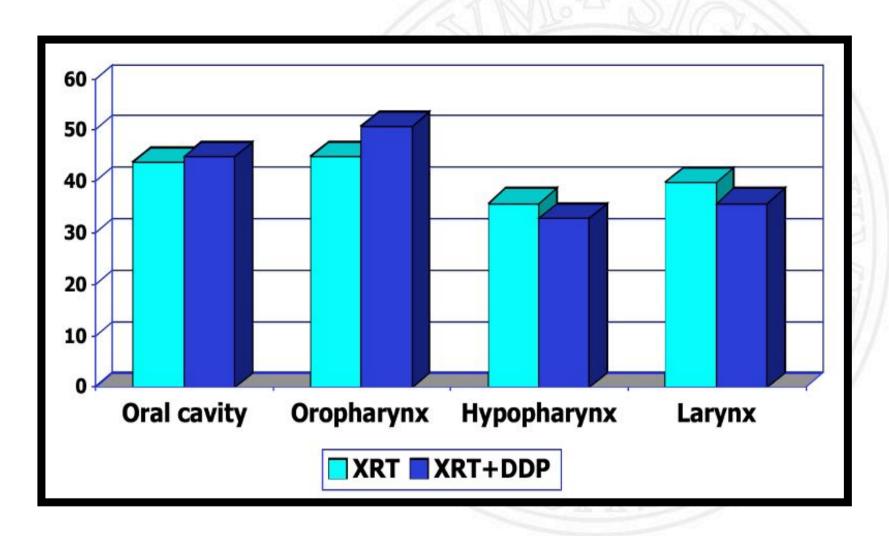
EORTC 22931

Bernier et al; NEJM 2004

The NEW ENGLAND JOURNAL of MEDICINE

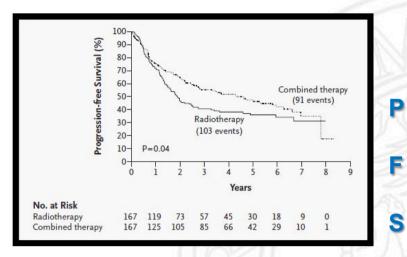
ORIGINAL ARTICLE

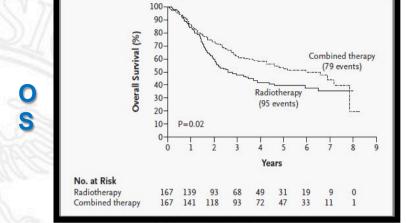
Postoperative Irradiation with or without Concomitant Chemotherapy for Locally Advanced Head and Neck Cancer

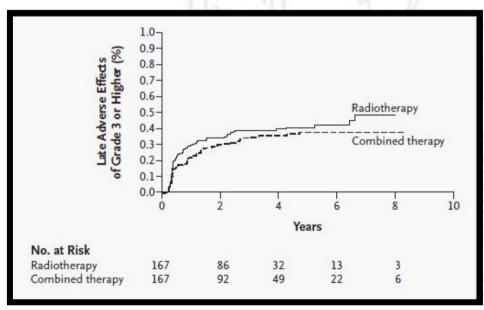

Jacques Bernier, M.D., Ph.D., Christian Domenge, M.D., Mahmut Ozsahin, M.D., Ph.D., Katarzyna Matuszewska, M.D., Jean-Louis Lefèbvre, M.D., Richard H. Greiner, M.D., Jordi Giralt, M.D., Philippe Maingon, M.D., Frédéric Rolland, M.D., Michel Bolla, M.D., Francesco Cognetti, M.D., Jean Bourhis, M.D., Anne Kirkpatrick, M.Sc., and Martine van Glabbeke, Ir., M.Sc., for the European Organization for Research and Treatment of Cancer Trial 22931

- □ SCC
- □ Primary surgery performed with curative intent
- ☐ Oral cavity, oropharynx,
- hypopharynx and larynx
- □ pT3-T4 any N, pT1-T2 with pN2-N3 or pT1-T2 with pN0,N1 with high risk features
- ☐ Insufficient resection margins, ECE +, VI +, PNI +

EORTC 22931- Case Mix

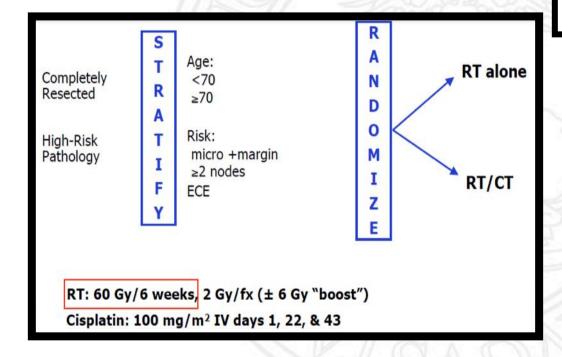



Bernier et al; NEJM 2004



EORTC 22931 – Results

Cumulative incidence major late adverse effects


- Xerostomia
- Dysphagia
- Muscular fibrosis
- Shoulder syndrome
- Impairment of lymphatic drainage
- Laryngeal complications
- Bone complications
- Mucosal necrosis
- Skin/Soft tissue fibrosis

Bernier et al; NEJM 2004

RTOG 9501

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MAY 6, 2004

VOL. 350 NO. 19

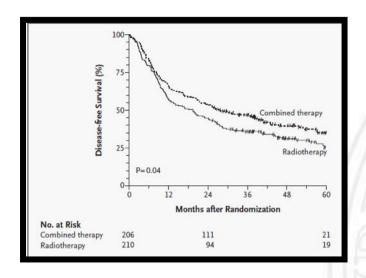
Postoperative Concurrent Radiotherapy and Chemotherapy for High-Risk Squamous-Cell Carcinoma of the Head and Neck

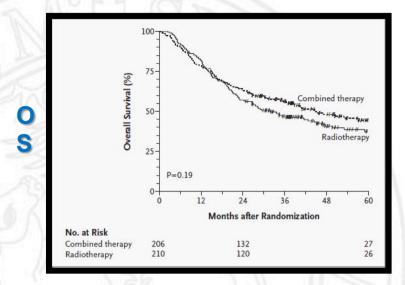
Jay S. Cooper, M.D., Thomas F. Pajak, Ph.D., Arlene A. Forastiere, M.D., John Jacobs, M.D.,
Bruce H. Campbell, M.D., Scott B. Saxman, M.D., Julie A. Kish, M.D., Harold E. Kim, M.D., Anthony J. Cmelak, M.D.,
Marvin Rotman, M.D., Mitchell Machtay, M.D., John F. Ensley, M.D., K.S. Clifford Chao, M.D.,
Christopher J. Schultz, M.D., Nancy Lee, M.D., and Karen K. Fu, M.D.,
for the Radiation Therapy Oncology Group 9501/Intergroup

- □ SCC
- Macroscopically resected disease
- Oral cavity, oropharynx, hypopharynx and larynx
- ☐ High-risk features: ≥ 2
 positive nodes, ECE +, R1
 resection

Cooper et al; NEJM 2004

RTOG 9501- Case Mix


Subsites	RT	RT-CT
Oral cavity	30%	24%
Oropharynx	37%	48%
Hypopharynx	12%	7%
Supraglottic larynx	15%	14%
Glottic larynx	5%	5%
Subglottic larynx	<1%	1%


Cooper et al; NEJM 2004

RTOG 9501 - Results

		RT		RT	+ CT		
		Grade		Grade			
	2	3	4	2	3	4	
Acute in-field	65	4	0	77	8	0	
other		N/A		87	29	2	
Late	29	6	0	28	10	2	
Any time*	84	12	0	106	50	4	
: -	40%	6%	0	51%	24%	2%	

Cooper et al; NEJM 2004

RTOG 9501 – Long term results

International Journal of Radiation Oncology biology • physics

www.redioumal.ore

Clinical Investigation: Head and Neck Cancer

Long-term Follow-up of the RTOG 9501/Intergroup Phase III Trial: Postoperative Concurrent Radiation Therapy and Chemotherapy in High-Risk Squamous Cell Carcinoma of the Head and Neck

Jay S. Cooper, MD,* Qiang Zhang, PhD,† Thomas F. Pajak, PhD,†
Arlene A. Forastiere, MD,† John Jacobs, MD,§ Scott B. Saxman, MD,
Julie A. Kish, MD,¶ Harold E. Kim, MD,** Anthony J. Cmelak, MD,††
Marvin Rotman, MD,‡† Robert Lustig, MD,§§ John F. Ensley, MD,§ Wade Thorstad, MD,
Christopher J. Schultz, MD,¶¶ Sue S. Yom, MD,*** and K. Kian Ang, MD, PhD†††

	RT (n=205) Grade				RT + CT (n=193) Grade				e	
	1	2	3	4	5	1	2	3	4	5
Skin	72	17	2	0	0	67	20	2	4	0
Mucous membrane	48	17	4	2	0	50	24	2	2	0
Subcutaneous tissue	41	39	6	1	0	55	43	4	0	0
Salivary gland	50	61	6	0	0	34	77	8	0	0
Pharynx/esophagus	42	35	12	1	0	31	28	17	2	0
Larynx	36	6	3	2	0	46	8	6	0	1
Spinal cord	17	0	0	0	0	35	0	0	0	0
Bone	14	5	1	2	0	23	2	1	5	0
Joint	22	8	2	0	0	29	8	1	0	0
Brain	19	1	1	0	0	31	0	0	0	0
Other neurologic	20	4	2	0	0	29	9	4	0	0
Hematologic	26	5	1	1	0	39	12	4	0	0
Renal	17	0	0	0	0	32	3	2	0	0
Upper GI	19	3	1	0	0	31	3	3	0	0
Other	21	26	8	0	0	31	19	5	2	1

Cooper et al; IJROBP 2012

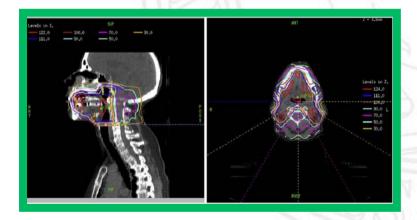
RADIOTHERAPY

Int. J. Radiation Oncology Biol. Phys., Vol. 73, No. 4, pp. 1096–1103, 2009
Copyright © 2009 Ekevier Inc.
Printed in the USA. All rights reserved
0360-3016/098-see from matter

doi:10.1016/j.ijrobp.2008.05.024

CLINICAL INVESTIGATION

Head and Neck


INTENSITY-MODULATED RADIOTHERAPY IN POSTOPERATIVE TREATMENT OF ORAL CAVITY CANCERS

Daniel R. Gomez, M.D.,* Joanne E. Zhung, B.A.,* Jennifer Gomez, B.A.,* Kelvin Chan, B.A.,* Abraham J. Wu, M.D.,* Suzanne L. Wolden, M.D.,* David G. Pfister, M.D.,† Ashok Shaha, M.D.,† Jatin P. Shah, M.D.,† Dennis H. Kraus, M.D.,† Richard J. Wong, M.D.,† and Nancy Y. Lee, M.D.*

Departments of *Radiation Oncology, †Medical Oncology, and ‡Head and Neck Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY

Disease subsite
Oral tongue
Floor of mouth
Buccal mucosa
Gingiva
Hard palate
Retromolar trigone

Variable	Dose (Gy)/fractions	Primary site	Nodal volume
Gross positive margins or gross residual disease	70/2.0	Gross PTV	_
Microscopic positive margins	66/2.0	Microscopic PTV	
Negative margins, high-risk disease	60/2.0 or 59.4-63/1.8	High-risk PTV	High-risk PTV
Negative margins, low-risk/contralateral disease	54/1.8	Low-risk PTV	Low-risk PTV

	Grade (n)						
Toxicity	1	2	3	4			
Dermatitis	0	0	0	0			
Mucositis	1	2	1	0			
Salivary gland	6	2	2	0			
Mandible	3	3	0	0			
Esophagus	2	1	3	0			
Larynx	3	0	0	0			
Trismus	3	3	0	0			

Gomez et al; IJROBP 2009

Contents lists available at SciVerse ScienceDirect

Cancer Treatment Reviews

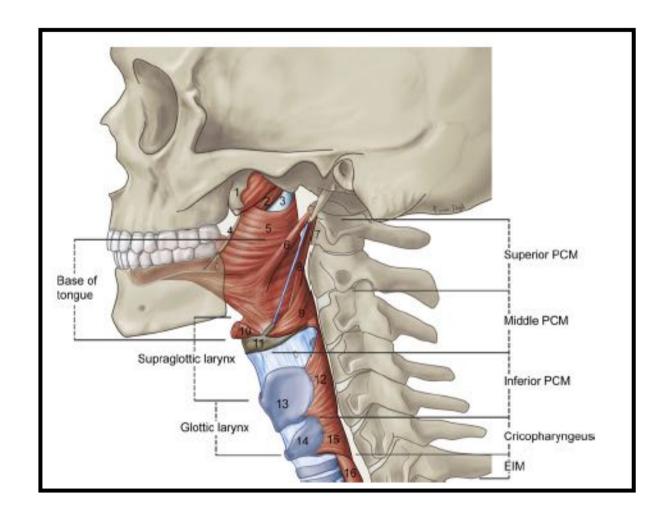
journal homepage: www.elsevierhealth.com/journals/ctrv

Swallowing dysfunction in head and neck cancer patients treated by radiotherapy: Review and recommendations of the supportive task group of the Italian Association of Radiation Oncology

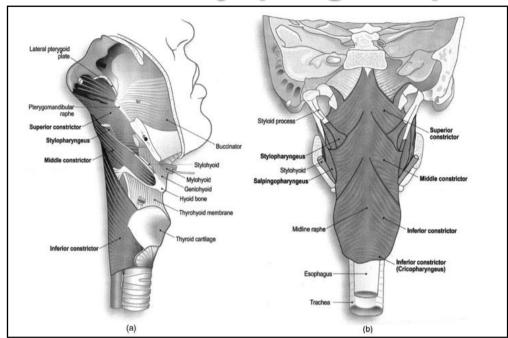
Elvio G. Russi^{a,*}, Renzo Corvò^b, Anna Merlotti^c, Daniela Alterio^d, Pierfrancesco Franco^e, Stefano Pergolizzi^f, Vitaliana De Sanctis^g, Maria Grazia Ruo Redda^h, Umberto Ricardiⁱ, Fabiola Paiar^j, Pierluigi Bonomo^k, Marco C. Merlano¹, Valeria Zurlo^m, Fausto Chiesa^m, Giuseppe Sanguinetiⁿ, Jacques Bernier^o

Pre-treatment rate: 11-53%

Post-treatment rate: 11-62%


Authors	Year	Pts	Anatomical site	Stage	Aspiration at diagnosis [silent]	After [silent]
Stenson et al. ⁴⁵	2000	79	Oral cavity Oropharynx Larynx Hypopharynx	III-IV	43% (34/78)†	
Wu et al. ¹¹⁸	2000	31	Nasopharynx	Dysphagia		(93.5% (29/31) [41.9% (13/31)]
Hughes et al.173	2000	49	Nasopharynx	Treated pts		[22% [11/49)]
Rosen et al. ¹⁷⁴	2001	27	Oral cavity Oropharynx Larynx Hypopharynx	III-IV	41% (11/27) [18.5%(5/27)]	
Eisbruch et al. ²⁴	2002	22	Not specified	Non resectable	14% (3/22) [9% (2/22)]	62% (8/13) [38% (5/13)]
Carrara-de Angelis et al. 175	2003	19	Larynx Hypopharynx	II-IV		26% (5/19) [26%(5/19)]
Graner et al. ¹⁷⁶	2003	11	Oropharynx Larynx Hypopharynx	III-IV	18% (2/11)	54% (6/11)
Smith et al. ¹⁷⁷	2004	29	Oropharynx Hypopharynx	III–IV	n.r.	81% (13/16 → 74 Gy) 11% (1/9 → 60 Gy)
Kotz et al. ¹⁷⁸	2004	12	Oral cavity Oropharynx Larynx Unknown	III-IV	0%	41% (5/12)
Nguyen et al. 179	2006	63	All [§]	II-IV	17% (10/63) [‡]	59% (37/63)
Langerman et al.56	2007	130	All [§] and unknown	II-IV	53% (33/62) (15% frank**)	62% (81/130) (23,1% frank aspiration)
van der Molen et al. ²	2009	55	All [§]	III–IV	18% (10/55) [13% (7/55)]	
Dirix et al. ⁵⁷	2009	53	All ⁵	III-IV	32.1% (17/53)	26,4% (14/53)
Feng et al. 180	2010	73	Oropharynx	III-IV	11% (8/73)	26% (18/73) [60% (12/18)]

Russi EG et al; Cancer Treat Rev 2013


DARS

DARS: dysphagia/aspiration-related structures

Constrictors muscles

PSCM PMCM PICM

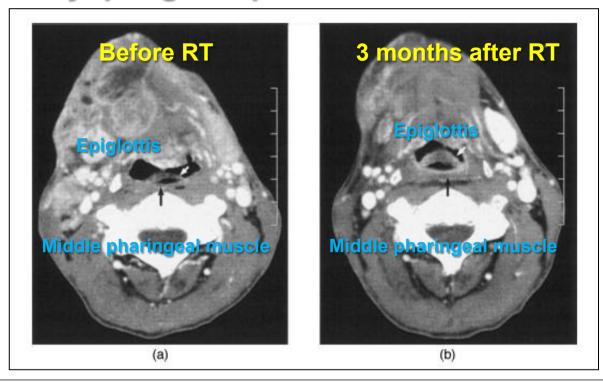
- Supraglottic larynx
- **Glottic larynx**
- Suprahyoid muscles

Mylohyoid Geniohyoid **Digastric**

Longitudinal pharyngeal muscles

Stylopharyngeus **Palatopharyngeus**

Salphyngopharyngeus


Proximal to their blending with pharyngeal constrictors

Eisbruch A et al: IJROBP 2004

DARS: dysphagia/aspiration-related structures

- Pharyngeal constrictors muscles (median midline thickness pre- vs post-RT: 2.5 mm vs 7 mm
- Supraglottic larynx (median midline thickness pre- vs post-RT: 2 mm vs 4 mm)
- Glottic larynx and aryepiglottic folds (median midline thickness pre- vs post-RT: 2 mm vs 4 mm)

Eisbruch A et al: IJROBP 2004

Floor of the mouth muscles

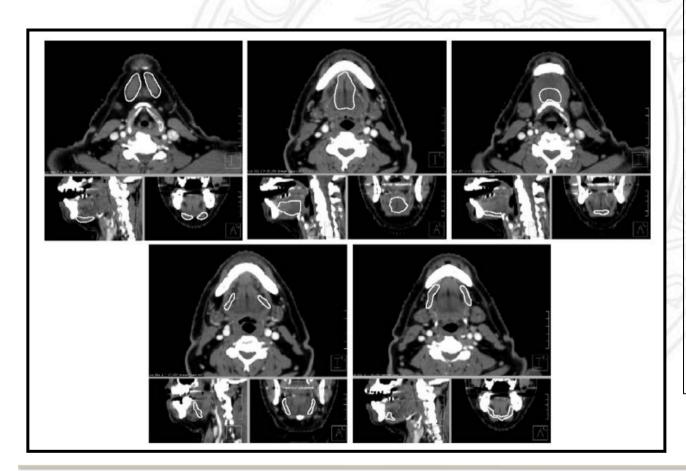
By elevating and anteriorly displacing the hyoid bone, an effective epiglottic tilt and negative pressure is generated allowing protection of the airway with entry of the food bolus into the upper esophagus

Floor of the mouth muscles

Oral Oncology 50 (2014) 65-70

Contents lists available at ScienceDirect

Oral Oncology



Radiation dose to the floor of mouth muscles predicts swallowing complications following chemoradiation in oropharyngeal squamous cell carcinoma

Rachit Kumar^a, Sara Madanikia^a, Heather Starmer^b, Wuyang Yang^a, Emi Murano^b, Sara Alcorn^a, Todd McNutt^a, Yi Le^a, Harry Quon^{a,b,a}

Extrinsic tongue muscles

- Anterior digastric
- Genioglossus

Suprahyoid muscles

- Geniohyoid
- Hyoglossus
- Mylohyoid

Kumar R et al; Oral Oncol 2014

Floor of the mouth muscles

Oral Oncology 50 (2014) 65-70

Contents lists available at ScienceDirect

Oral Oncology

journal homepage: www.elsevier.com/locate/oraloncology

Radiation dose to the floor of mouth muscles predicts swallowing complications following chemoradiation in oropharyngeal squamous cell carcinoma

Rachit Kumar^a, Sara Madanikia^a, Heather Starmer^b, Wuyang Yang^a, Emi Murano^b, Sara Alcorn^a, Todd McNutt^a, Yi Le^a, Harry Quon ^{a,b,*}

Multivariate analysis comparing dosimetric characteristics. FoM - combined floor of mouth muscles. V40 - percent volume of muscle receiving a dose of 40 Gy or more.

Variable	Estimate (Odds ratio)	p-Value	Confidence interval	VIF
T Stage	0.17	.061	[1.05, 58.29]	1.16
N Stage	12.40	.049*	[1.46, 256.95]	1.06
HPV Status	6.53	.145	[0.01, 1.62]	1.14
FoM Mean	0.54	.021	[0.30, 0.86]	7.60
Genioglossus V40	1.16	.093	[1.00, 1.44]	2.18
Geniohyoid Minimum	1.30	.016	[1.07, 1.68]	5.88

FoM mean dose correlates with VFS abnormalities

Kumar R et al; Oral Oncol 2014

Assessment methods of dysphagia

Subgroup		Assessment methods	Reference no.	
Objective instrument evaluation	ument evaluation MBS examinations/VFSS		5,7,11,26-28,32	
		FEES	12	
		Transnasal esophagoscopy	12	
Subjective evaluation	Patient-rated scales	MDADI	24,27,29,34	
odbjedave evaluation	ration rated octavo	PSS-HN	6,27,29	
		SPSS	7,22	
		EORTC H&N35	10,29	
		UWQOL	12,24	
		Swallowing Screening Questionnaire	34	
		SF-36	34	
		Head and Neck Radiotherapy Questionnaire	35	
		The DAHANCA morbidity scoring system for dysphagia	6	
		Swallowing scale of the AusToms	26	
		Pharyngoesophageal stricture	28	
		Percutaneous endoscopic gastrostomy PEG tube dependence at last follow-up visit	28	
	Clinician-rated scales	CTCAE	5,23	
		RTOG/EORTC Late Radiation Morbidity Scoring Criteria	5,10,29,31	

Jiang et al; Head and Neck 2015

Predictors of late dysphagia after (chemo-) radiation

Evidence level	Predictors for dysphagia	No. of patients in high-quality studies	No. of patients in moderate-quality studie
Strong evidence	The use of CRT	714 ^{24,28,31}	48 ³²
	Hypopharyngeal carcinoma	1937 ^{6,10,28}	40722
Moderate evidence	Advanced tumor stage	19906,31	40722
WOOD CARD OFFICE TOO	Base of tongue carcinoma	476 ^{10,28}	701
	Laryngeal carcinoma	476 ^{10,28}	
	Nasopharyngeal carcinoma	591 ^{6,31}	
	Mean RT dose to the middle PCM	404 ^{5,10}	
		354 ¹⁰	927,27
	Mean RT dose to the superior PCM	354	94 ^{11,12}
	Mean RT dose to the inferior PCM		
	The presence of baseline dysphagia	14616	53 ²⁹
Limited evidence	A higher weight loss before RT	529 ³¹	
	A higher RT dose to supraglottic larynx	354 ¹⁰	
	A higher RT dose	167 ²⁴	
	An increase in blood flow and volume in the PCM in the second week of RT	15 ²³	
	A higher RT dose to cricoid pharyn- geal inlet		39 ¹²
	Bilateral neck irradiation	529 ³¹	
	Dose-volume constraints (V30 <65%; V35 <35%) for anterior oral cavity	ठत्तर	31 ²⁷
	Dose-volume constraints (V55 <80%; V65 <30%) for high superior PCM		31 ²⁷
	Women		40722
	Disease status at last follow-up (pro- gression and dead)		4725
	Low SF-36 Mental Health Subscale Score		40 ³⁴
	Poor pretreatment MDADI score	16724	
	Oral cavity carcinoma	354 ¹⁰	
	Pharyngeal wall cancer	122 ²⁸	
	The history of speech pathology consultation	122	40^{34}
	Prolonged nothing by mouth status	PG0002_0	4034
Conflicting evidence	The use of 3D-CRT Younger age	354 ¹⁰ 643 ^{10,24,28}	407 ²²

CLINICAL REVIEW	David W. Elsell, AU, Yardist- bills
Risk factors for late dysphagia after (chemo)rad systematic methodological review	iotherapy for head and neck cancer: A
Nan Jung, MD, Li-Juan Zhang, MD, Li-Ya Li, MD, Yue Zhao, PhD;	
Send of Names State States States & Department of States States States States States Comp. Com.	

Jiang et al; Head and Neck 2015

XRS: xerostomia-related structures

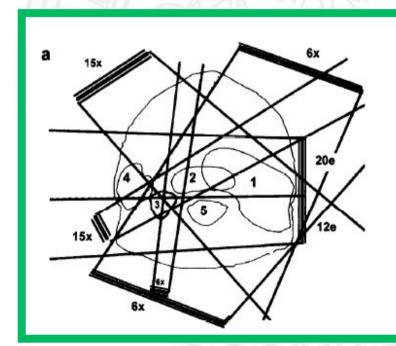
- > Parotid glands
- >Submanidibular glands
- >Sublingual glands
- > Minor salivary glands
 - Cheeks
 - Soft palate
 - Lips

Int. J. Radiution Oncology Biol. Phys., Vol. 36, No. 2, pp. 4693–480, 1996 Copyright. © 1996 Ebevier Science Inc. Printed in the 15A. All rights reserved (104), 31(369), 15(30) 4, 60.

PII: S0360-3016(96)00264-7

Technical Innovations and Notes

PAROTID GLAND SPARING IN PATIENTS UNDERGOING BILATERAL HEAD AND NECK IRRADIATION: TECHNIQUES AND EARLY RESULTS


AVRAHAM EISBRUCH, M.D.,* JONATHAN A. SHIP, D.M.D.,* MARY K. MARTEL, PH.D.,*
RANDALL K. TEN HAKEN, PH.D.,* LON H. MARSH, C.M.D.,* GREGORY T. WOLF, M.D.,‡
RAMON M. ESCLAMADO, M.D.,‡ CAROL R. BRADFORD, M.D.,‡ JEFFREY E. TERRELL, M.D.,

STEPHEN S. GEBARSKI, M.D., AND ALLEN S. LICHTER, M.D.*

Departments of *Radiation Oncology, Thospital Dentistry, *Otolaryngology-Head and Neck Surgery, and *Radiology, University of Michigan, Ann Arbor, MI

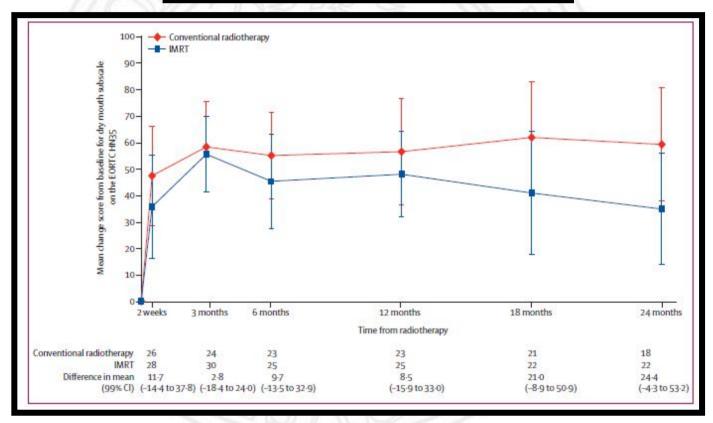
Xerostomia

Sparing parotid glands

Eisbruch et al; IJROBP 1996

Xerostomia

Sparing parotid glands


Investigator		Total prescribed target dose $(Gy)^{\stackrel{\star}{-}}$		Dose-volume parameters	
	Patients (n)/follow-up (mo)		"Functional" endpoints assessed	Unstimulated	Stimulated
Blanco et al. (6), 2005	55/6; 29/12	50-71 [‡]	Stimulated saliva flow ‡		Mean dose <25.8 Gy [§]
Eisbruch et al. (7), 1999	88/1-12	58-72	Saliva flow, stimulated and unstimulated	Mean dose ≤22–25 Gy [¶]	Mean dose ≤25–26 Gy
				V ₁₅ <66%	V ₁₅ <67%
				V ₃₀ <43%	V ₃₀ <45%
				V45 < 26%	V45 <24%
Li et al. (9), 2007	142/1-24	60–75	Saliva flow; stimulated and unstimulated $^{\#}$	Mean dose <25-30 Gy	Mean dose <25-30 Gy
Maes et al. (8), 2002	39/1-4	66–70—	SEF †† ; stimulated flow, 99m Tc-pertechnetate scintigraphy		Mean dose ≤20 Gy ^{‡‡}

Deasy et al; IJROBP 2010

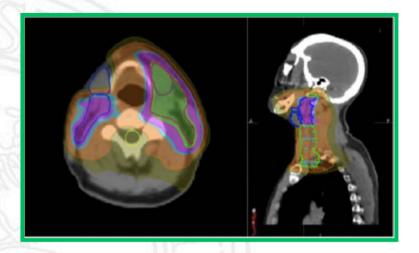
Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial Christopher M Nutting, James P Morden, Kevin J Harrington, Teresa Guenero Urbano, Shreenang A Bhide, Catharine Gark, Bizabeth A Miles, Alsha B Mich, Kate Newbold, ManyAnne Tanay, Fawzi Adob, Sansh J efferies, Christopher Scrass, Beng K Yup, Roger P A'Hern, Mark A Sydenham, Marie Emson, Emma Hall, on behalf of the PARSPORT trial management group*

Nutting et al; Lancet Oncol 2011

Xerostomia

Submandibular glands

ORIGINAL ARTICLE


Safety of contralateral submandibular gland sparing in locally advanced oropharyngeal cancers: A multicenter review

Tyler P. Robin, MD, PhD,* Gregory N. Gan, MD, PhD,* Moses Tam, MD,* David Westerly, PhD,* Nadeem Riaz, MD,* Sana D. Karam, MD, PhD,* Nancy Lee, MD,* David Roben, MD**

*Department of Radiation Oncology, University of Colorado Cancer Center, Aurora, Colorado, *New York University School of Medicine, New York, New York, *Department of Radiation Oncology, Memorial Siban-Kettering Cancer Center, New York, New York, New York.

Accented 3 December 2011

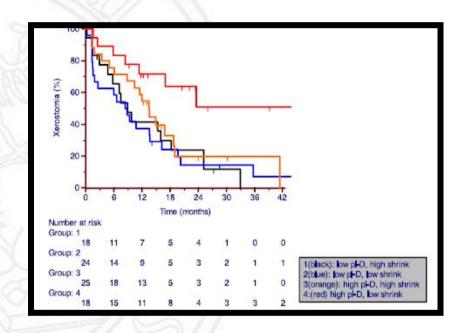
Published online 00 Month 2015 in Wiley Online Library (Wileyonlinelibrary.com). DOI 10.1002/hed.23928

Number	Primary site	T classification	N classification	Overall stage	Location of failure	Time to failure, mo
1	BOT	1	2b	Na	BOT	24.2
2	Tonsil	3	1	III	Ipsilateral level 2	Persistent disease
3	Tonsil	2	2b	Na	Ipsilateral levels 2/3	29.3
4	Tonsil	2	2b	Na	Ipsilateral level 2	8.8
5	Tonsil	2	2c	Na	Ipsilateral level 2	2.8
6	Tonsil	2	2b	Na	Ipsilateral levels 2/3/4	3.9
7	Tonsil	1	3	IVb	Contralateral level 2A*	15.5
8	Tonsil	2	2b	Na	Distant metastases	4.5
9	BOT	1	2b	Na	Distant metastases	6.7
10	Tonsil	2	2b	Na	Distant metastases	26.6
11	Tonsil	4a	2b	Na	Distant metastases	12.8
12	Tonsil	2	2b	Na	Distant metastases	4.5

Robin et al; Head and Neck 1996

Adaptive radiotherapy

Sanguineti et al. Radiation Oncology (2015) 10:19
DOI 10.1186/s13014-015-0331-x


RESEARCH

Open Access

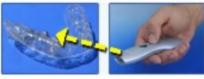
Parotid gland shrinkage during IMRT predicts the time to Xerostomia resolution

Giuseppe Sanguineti^{1,2}, Francesco Ricchetti^{1,2}, Binbin Wu^{1,2}, Todd McNutt^{1,2} and Claudio Fiorino^{3*}

Covariate	HR	95%CI		p value
		Lower	Upper	
Body Mass Index	0.932	0.875	0.992	0.027
% PG Shrinkage at mid-tmt	1.034	1.004	1.064	0.024
WA mean PG pl-D	0.927	0.886	0.971	0.001

Sanguineti et al; Radiat Oncol 2015

Limited Success in Relieving Xerostomia



Skin effects

- Risk factors:
 - Pt related:
 - poor nutritional status
 - diabetes
 - vasculopathy
 - · connective tissue disease
 - Treatment related:
 - large fields
 - electron beam RT
 - post- op RT
 - concurrent CT
 - thin epidermis (face, neck)

Susceptibles sites:

> Skin folds, lips, ear lobes, incision lines or wounds, peristomal skin

Skin effects

- > Treatment:
 - General skin care (cleaning, moisturizing)
 - Avoidance of sun exposure
 - Steroid creams + antibacterial ointments
 - Silvadene ointments
 - Pain killers

Late skin effects:

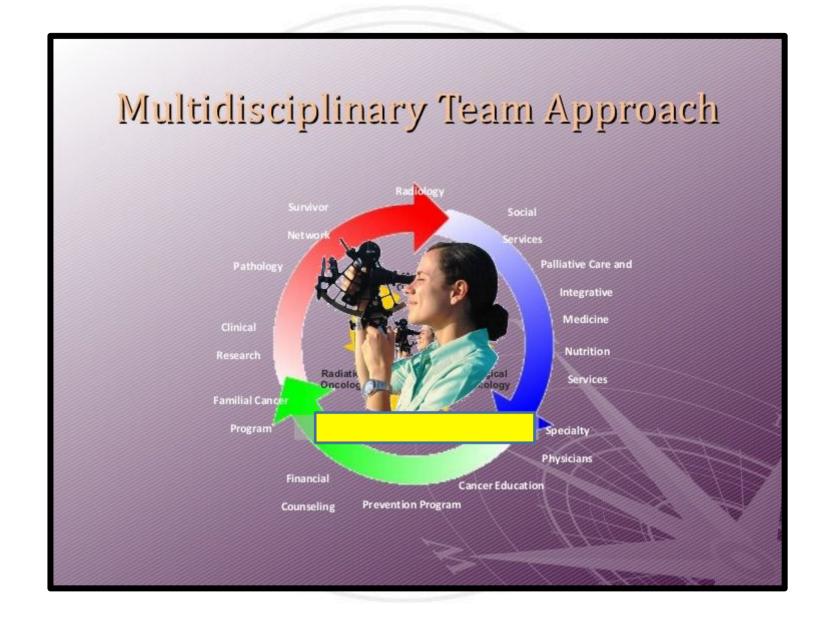
➤ Thining, teleangiectasia, hair loss in irradiated area, loss of sweat and sebaceous glandular function, hyper/hypopigmentation

Osteoradionecrosis

Bone within the radiation field becomes devitalized and exposed through the overlying skin or mucosa, persisting as a non-healing wound for 3 months or more

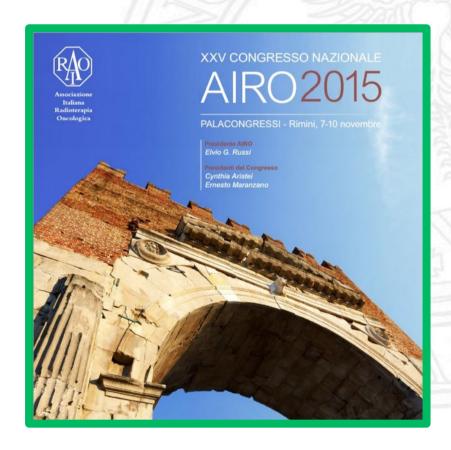
Osteoradionecrosis

- Most frequently noted in the first few years after completion of treatment (70-94%)
- ❖ 'Early onset' ORN (< 2 yrs): related to RT doses > 70
 Gy or surgical trauma
- 'Late onset' ORN: thought to arise from trauma in a chronically hypoxic tissue environment



Osteoradionecrosis

- ❖ Risk factors: alcohol, smoking (during RT)
- ❖ Poor dental care; no evaluation prior RT
- ❖ Dosimetric parameters: Dmax > 70 Gy
- ❖ Treatment:
 - Pentoxyfilline
 - Clodronate
 - Hyperbaric oxygen (no useful in a systematic review)



Pierfrancesco Franco

Grazie dell' attenzione

Mario Schifano – Indicazione - 1963

