PALACONGRESSI - Rimini, 7-10 novembre

DICHIARAZIONE

Relatore: Andrea Vavassori

Come da nuova regolamentazione della Commissione Nazionale per la Formazione Continua del Ministero della Salute, è richiesta la trasparenza delle fonti di finanziamento e dei rapporti con soggetti portatori di interessi commerciali in campo sanitario.

- Posizione di dipendente in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Consulenza ad aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Fondi per la ricerca da aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Partecipazione ad Advisory Board (NIENTE DA DICHIARARE)
- Titolarietà di brevetti in compartecipazione ad aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Partecipazioni azionarie in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
- Altro

XXV CONGRESSO NAZIONALE

AIRO 2015

PALACONGRESSI - Rimini, 7-10 novembre

SIMPOSIO AIRO-AIOM Trattamento multimodale del carcinoma vescicale

Ottimizzazione radioterapica: volumi, dosi e tecniche

A. Vavassori

Divisione Radioterapia - Unità Brachiterapia

Istituto Europeo di Oncologia - Milano

Rimini 09/11/2015

Introduction

Accurately irradiating the bladder while minimizing the dose to surrounding normal tissues is made technically difficult by *day-to-day variations* in bladder *size*, *shape*, and *position*

Introduction

Recent advances in:

- imaging (CT, MR, PET)
- computerized CT planning
- conformal radiotherapy delivery
- on-treatment verification

- > allow appropriate patient selection
- > improve accuracy of treatment delivery
- > reduce irradiation of adjacent normal tissues

Simulation

Patient supine with a knee support

Bladder: emptied immediately before scanning and treatment, to reduce the volume irradiated

Rectum: emptied to reduce organ motion

Partially distended bladder may be helpful to limit dose to the entire bladder, rectum and bowel

Target delineation

- bladder maps (cystoscopy)
- operation notes
- histology reports
- imaging

Caution is required in interpreting images obtained soon after TURB or deep muscle biopsies due to the presence of **edema** and **hemorrhage** which may mimic tumor

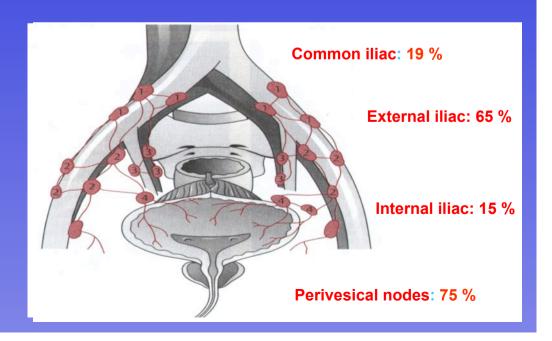
Target delineation

GTV:

- the primary bladder tumor
- any extravesical spread

CTV:

- the whole bladder
- the proximal urethra
- any microscopic spread
- the pelvic lymph nodes (if indicated)



Lymphatic drainage & therapeutic planning

Omission of regional node irradiation is justified in cN0

The majority of potential involved regional lymph nodes are included even in relatively small fields

CT+RT

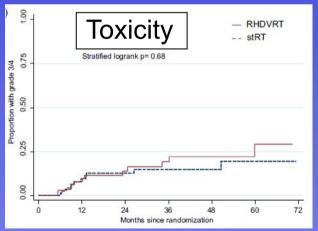
Partial bladder treatment

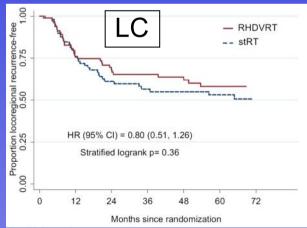
- lower dose to the whole bladder
- boost (full dose) to the bladder tumor alone

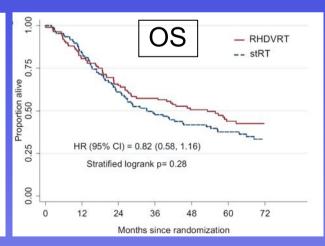
May be considered:

- unifocal tumors
- in elderly patients
- for palliative irradiation

Partial bladder treatment


Randomized Noninferiority Trial of Reduced High-Dose Volume Versus Standard Volume Radiation Therapy for Muscle-Invasive Bladder Cancer: Results of the BC2001 Trial (CRUK/01/004)


IJROBP 2013


BC2001

- full bladder irradiation = PTV1 100% (55 Gy/20, 64 Gy/32)
- partial bladder irradiation = PTV1 80% + PTV2 20%

Robert A. Huddart, PhD,*^{,†} Emma Hall, PhD,* Syed A. Hussain, MD,[‡]

Not all regions of the bladder require the same dose

Extra-Vesical tumor Extension (EVE)

Int. J. Radiation Oncology Biol. Phys., Vol. 75, No. 5, pp. 1379–1384, 2009

Copyright © 2009 Elsevier Inc.

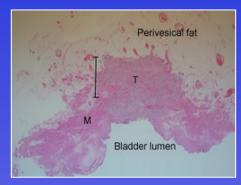
Printed in the USA. All fights reserved

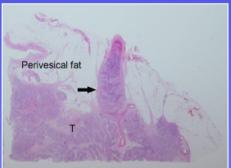
0360-3016095-see from matter

doi:10.1016/j.ijrobp.2009.01.063

CLINICAL INVESTIGATION

Bladder


DEFINING THE CLINICAL TARGET VOLUME FOR BLADDER CANCER RADIOTHERAPY TREATMENT PLANNING


PETER JENKINS, Ph.D., F.R.C.R.,* SALIM ANJARWALLA, F.R.C.PATH.,† HUGH GILBERT, F.R.C.S.,‡

AND RICHARD KINDER, F.R.C.S.,‡

EVE is more extensive in patients with:

- LVI
- squamoid differentiation
- tumors > 3.5 cm

Larger CTV expansions may be required!

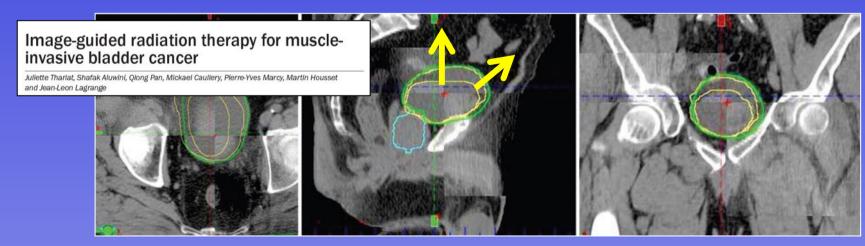
CTV -> PTV

Accepted standard practice has been to add isotropic margins of 1.5 to 3 cm uniformly around the bladder or bladder tumor

These margins are intended to allow for:

- organ motion
- errors in target delineation
- daily treatment set-up

Meijer, IJROBP 2003 Muren, RO 2003 Pos, IJROBP 2006 Lotz, IJROBP 2006 Muren, RO 2007



Organ motion / deformation

An increase of 50 cc can lead to local bladder wall displacements of up to 1 cm

Lotz, Med Phys 2005

The dominant movement is primarily in the superior direction, and secondarily in the anterior direction

Fused cone-beam CT image performed before and after RT

Set-up errors

Contents lists available at SciVerse ScienceDirect

Clinical Oncology

journal homepage: www.clinicaloncologyonline.net

Original Article

Bladder Cancer Radiotherapy Margins: A Comparison of Daily Alignment using Skin, Bone or Soft Tissue

F. Foroudi *, D. Pham †, M. Bressel *, J. Wong †, A. Rolfo †, P. Roxby ‡, T. Kron ‡

Skin

	CTV + 0.5	CTV + 1	CTV + 1.5	CTV + 2	CTV + 2.5
Superior	41% [22-61%]	59% [39-78%]	81% [62-94%]	96% [81-100%]	96% [81-100%]
Inferior	37% [19-58%]	74% [54-89%]	96% [81-100%]	100% [87-100%]	100% [87-100%]
Left	48% [29-68%]	81% [62-94%]	100% [87-100%]	100% [87-100%]	100% [87-100%]
Right	70% [50-86%]	93% [76-99%]	100% [87-100%]	100% [87-100%]	100% [87-100%]
Anterior	37% [19-58%]	63% [42-81%]	78% [58-91%]	93% [76-99%]	96% [81-100%]
Posterior	33% [17-54%]	70% [50-86%]	93% [76-99%]	100% [87-100%]	100% [87-100%]
Total	0% [0-13%]	19% [6-38%]	56% [35-75%]	93% [76-99%]	96% [81-100%]
	CTV + 0.5	CTV + 1	CTV + 1.5	CTV + 2	CTV + 2.5
Superior	37% [19-58%]	70% [50-86%]	93% [76-99%]	96% [81-100%]	96% [81-100%]
Inferior	30% [14-50%]	85% [66-96%]	93% [76-99%]	100% [87-100%]	100% [87-100%]
Left	78% [58-91%]	100% [87-100%]	100% [87-100%]	100% [87-100%]	100% [87-100%]
Right	81% [62-94%]	100% [87-100%]	100% [87-100%]	100% [87-100%]	100% [87-100%]
Anterior	37% [19-58%]	63% [42-81%]	81% [62-94%]	93% [76-99%]	96% [81-100%]
Posterior	52% [32-71%]	81% [62-94%]	93% [76-99%]	96% [81-100%]	100% [87-100%]
Total	0% [0-13%]	41% [22-61%]	63% [42-81%]	89% [71–98%]	96% [81-100%]

Bone

_ C1	4.1		
OTT.	TIC	CI	ΙД
			15

	CTV + 0.5	CTV + 1	CTV + 1.5	CTV + 2	CTV + 2.5
Superior	63% [42-81%]	96% [81-100%]	96% [81-100%]	100% [87-100%]	100% [87-100%]
Inferior	63% [42-81%]	96% [81-100%]	96% [81-100%]	100% [87-100%]	100% [87-100%]
Left	89% [71-98%]	100% [87-100%]	100% [87-100%]	100% [87-100%]	100% [87-100%]
Right	89% [71-98%]	100% [87-100%]	100% [87-100%]	100% [87-100%]	100% [87-100%]
Anterior	70% [50-86%]	89% [71-98%]	96% [81-100%]	100% [87-100%]	100% [87-100%]
Posterior	70% [50-86%]	89% [71-98%]	96% [81-100%]	100% [87-100%]	100% [87-100%]
Total	52% [32-71%]	89% [71-98%]	96% [81-100%]	100% [87-100%]	100% [87-100%]

A margin of 1.0 - 1.5 cm can be used when there is daily soft tissue matching, whereas a margin of 2 cm should be used with skin- or bone-based landmarks

Treatment margins

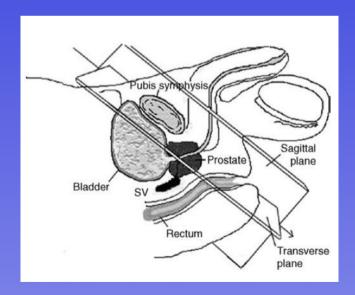
Different magnitude of errors for different regions of the bladder

Anisotropic margins should be used

Table 1	CTV to	PTV	Margin	Widths	Suggested	by Meijer
et al30					100000	11/01/11/11/19/2

	Without Correction Protocol (cm)	With Correction Protocol (cm)
Cranial	2.0	2.0
Caudal	1.2	1.0
Left	1.0	0.7
Right	1.0	0.7
Anterior	1.0	0.7
Posterior	1.4	1.3

Assessment of bladder movement

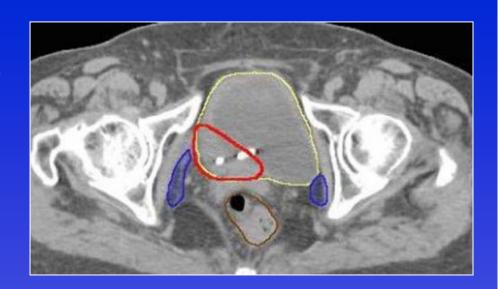

IGRT: US

Ultrasound Imaging to Assess Inter- and Intra-fraction Motion during Bladder Radiotherapy and its Potential as a Verification Tool

C. A. McBain*, M. M. Green*, J. Stratford†, J. Davies†, C. McCarthy†, B. Taylor‡, D. McHugh§, R. Swindell¶, V. Khoo*, P. Price*

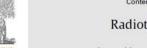
Clinical Oncology (2009) 21: 385-393

- before treatment
- identify patients who are unable to void bladder



Fiducial markers

Rigid cystoscope


• It can be difficult to reach the lower hemisphere

Loss of fiducial markers: 50% @ 11.5 days

Hulshof, Br J Radiol 2007 Mangar, Radiother Oncol 2007

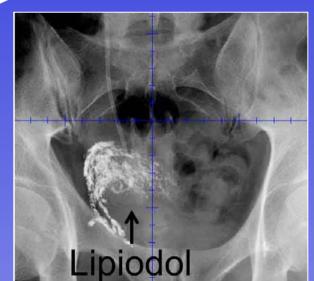
Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com


Bladder cancer radiotherapy

Lipiodol injection for target volume delineation and image guidance during radiotherapy for bladder cancer

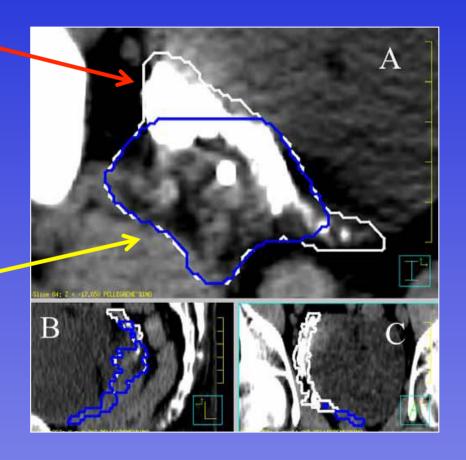

Floris Pos a., Axel Bex b, Hermina Maria Dees-Ribbers a, Anja Betgen a, Marcel van Herk a, Peter Remeijer a

- Immediately following maximal TURB
- Flexible cystoscope

LIPIODOL

- 2-3 mm from the resection margin
- 0.5 ml per injection / 20-30 injections
- High retention rate
 (loss of 24% in Lipiodol volumes @ 6 weeks

LIPIODOL


Lipiodol as a Fiducial Marker for Image-Guided Radiation Therapy for Bladder Cancer

Int Braz J Urol. 2014: 40: 190-7

Jessica M. Freilich, Philippe E. Spiess, Matthew C. Biagioli, Daniel C. Fernandez, Ellen J. Shi, Dylan C. Hunt, Shilpa Gupta, Richard B. Wilder

Tumor bed with Lipiodol

Tumor bed based upon cystoscopy & CT

In-room soft tissue imaging & adaptive RT

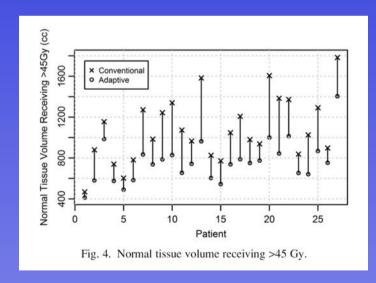
The use of high quality images acquired during or just prior to treatment delivery for modification of plans

 offline ART: a single adaptive treatment plan is generated using various repeated CT or CBCT over the first fractions (to account for the inaccuracies observed)

• <u>online ART</u>: the daily treatment plan is chosen from a library of pre-planned treatment plans based on CBCT

Adaptive RT

CLINICAL INVESTIGATION

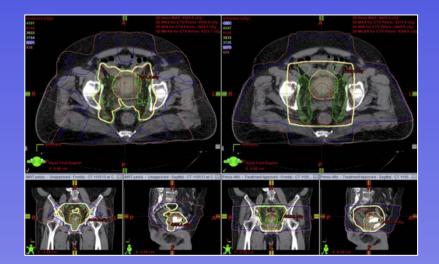

Bladder


ONLINE ADAPTIVE RADIOTHERAPY FOR MUSCLE-INVASIVE BLADDER CANCER: RESULTS OF A PILOT STUDY

FARSHAD FOROUDI, M.B., B.S., M.P.A., F.R.A.N.Z.C.R., JACKY WONG, M.Sc., R.T.T.,

IJROBP 2011

The use of an adaptive technique significantly reduces the volume of normal tissue irradiated



Mean volume receiving >45 Gy was 29% less in ART

IMRT: PRO

- allow partial bladder irradiation
- allow the delivery of a synchronous boost
- permit dose escalation to the tumor
- can reduce the dose to normal tissues

IMRT: CONTRA

requires excellent immobilisation

 requires increased time (risk of bladder filling and changes in bladder shape and size)

IMRT & integral dose

IMRT increases the MU demand compared to 3D-CRT

The dose from CBCT was of 3 cGy in the imaged volume

 The reduction in margin and choice of best plan of the day resulted in a lower total dose in most patients despite daily volumetric imaging

The effect on secondary cancer induction is small

	#	Simulationimaging	Total dose	Whole bladder dose	Partial bladder dose	Fraction size (Gy)	Fraction #	EQD2 (Gy)
Duncan and Quilty (1986) ^a	889	2D	55–57.5	55–57.5	-	2.75–2.88	20	60.2–63.8
Moonen et al. (1997) ^a	15	3D	66	66	-	2	Last 8 BID	66
	25	-8	66	66		2	Last 13 BID	
Rodel et al. (2002) ^a	186ª	2D	45–69.4	45–69.4	-:	1.8–2	25–33	45–69.4
Scholten et al. (1997) ^a	123	2D	36	36		6	6 (2×/ week)	54
Mameghan et al (1992) ^a	330	20	65	15-65		18.25	25_30	43.9–69
Perdona (2008) ^{a,b}	R	ACT		NC	A	ΓΙ(N	4
Mangar e (2006) ^a								-64
(C D)	75		60-64	48-52	12	2	24-26	52/60-64
Cowan et al. (2004) ^{a,d}	25	3D	52.5	52	_	2.63	20	56.3
(P B)	22	-	57.5	-	57.5	2.88	20	56.3-63.8
(P B)	16		55	-	55	3.44	16	57.1-64.9
Yavuz et al. (2003) (CD)	87	3D	45/67.5	45	22.5	1.8/1.5 CB	35	43.9–65
Pos et al. (2003)	47	3D	55	55	-	2/2.75 CB	20	40/55
(C D)		-	40	40	15		-	_
Efstathiou et al. (2009) (C D)	157	2D	64-65	52–55	12–15	1.8/ 1.5–1.8	36-42	60.9–62.2

Dose & fractionation

Conventional:

60 - 66 Gy in 30 - 33 fractions

Hypo-fractionation:

52.5 - 55 Gy in 20 fractions (2.75 Gy)

30 - 36 Gy in 5-6 fractions (6 Gy)

Accelerated hyper-fractionation:

whole pelvis = 45 Gy (1.8 Gy x 25)

boost = 22.5 Gy (second daily fraction, 1.5 Gy x 15)

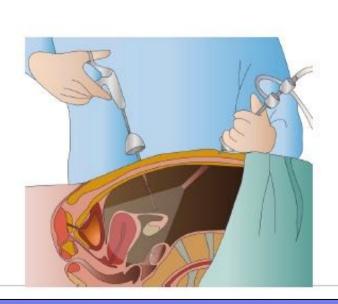
Rete Oncologica Lombarda

SIB

Pelvis: 51.2 – 54.4 Gy (1.6 – 1.7 Gy x 32)

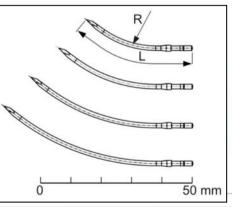
Whole bladder: 57.6 - 60.8 Gy (1.8 - 1.9 Gy x 32)

Tumor bed: 64 Gy (2 Gy x 32)

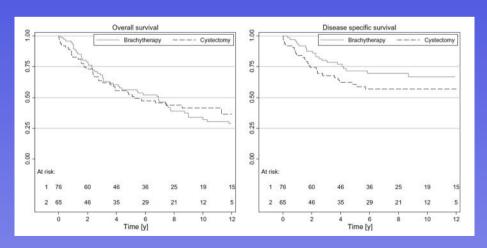

Inclusion criteria are:

- stage pT1–T3, N0, M0
- unifocal carcinoma
- size ≤5 cm diameter
- not in the trigone or bladder neck (not easily accessible)

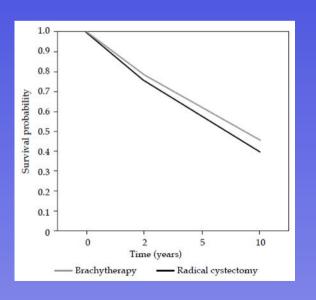
2-4 flexible cathetersOpen or laparoscopic surgery



- Minimally invasive laparoscopic brachytherapy procedures
 - Robotic-assisted laparoscopic surgery
 - Conventional laparoscopic surgery


- TURB
- EBRT 30-40 Gy to the pelvis
- Surgical exploration and implantation
- BT: 25 40 Gy (HDR or PDR)

Combination therapy of EBRT and BT shows equivalent patient outcome results compared to cystectomy



Bladder preservation with brachytherapy compared to cystectomy for T1-T3 muscle-invasive bladder cancer: a systematic review

Manouk K. Bos, Rafael Ordoñez Marmolejo, MD, Coen R.N. Rasch, MD, PhD, Bradley R. Pieters, MD, PhD

J Contemp Brachytherapy 2014; 6, 2: 191-199

Take-home message

Significant bladder volume and asymmetrical shape changes occur during the course of RT

IGRT can be used to adapt the RT (IMRT) plan to individual interfractional and intrafractional changes

Techniques are dependant on local protocols and infrastructure availability

GRAZIE PER L'ATTENZIONE

