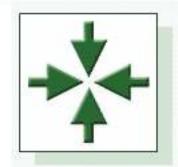
VI ZOOM Journal Club 2016

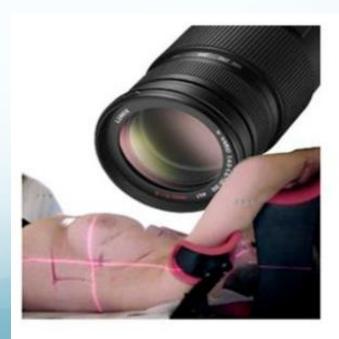
Bologna, 17 Febbraio 2017

NH Hotel De La Gare

II Sessione - Impatto della RT nei diversi profili biomolecolari

Moderatori: Luigia Nardone,
Antonella Baldissera


11.00 Rapporteur: Carmen De Santis


11.15 Discussant: Fiorenza De Rose

11.30 Caso clinico: Sonia Silipigni

11.45 Discussione

Gene expression profiling in breast cancer: classification, prognostication, and prediction

Jorge S Reis-Filho, Lajos Pusztai

Breast cancer is now perceived as a heterogeneous group of different diseases characterised by distinct molecular aberrations, rather than one disease with varying histological features and clinical behaviour.

Lancet 2011; 378: 1812-23

	Lum-A	Lum-B HER2-	Lum-B HER2+	HER2	TRIPLE NEGATIVE
LCR	99.1%	95.2%	95%	90.5%	89.6%
DFS	92.2%	80.1%	79%	77%	69.1%
DDFS	92.9%	82.2%	82.8%	83.3%	72.2%
os	95.1%	88.7%	92.5%	85.6%	78.5%
ROS	100%	93.4%	96%	88.8%	80.1%

BRIEF REPORT

Breast-cancer subtype, age, and lymph node status as predictors of local recurrence following breast-conserving therapy

Lior Z. Braunstein^{1,4} · Alphonse G. Taghian² · Andrzej Niemierko² · Laura Salama² · Alexander Capuco³ · Jennifer R. Bellon³ · Julia S. Wong³ · Rinaa S. Punglia³ · Shannon M. MacDonald² · Jay R. Harris³

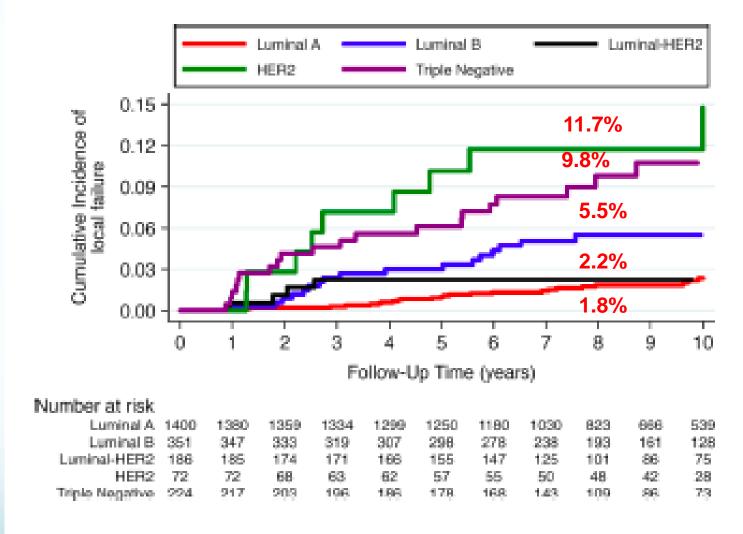


Fig. 1 Unadjusted Kaplan-Meier estimate of local recurrence by biologic subtype

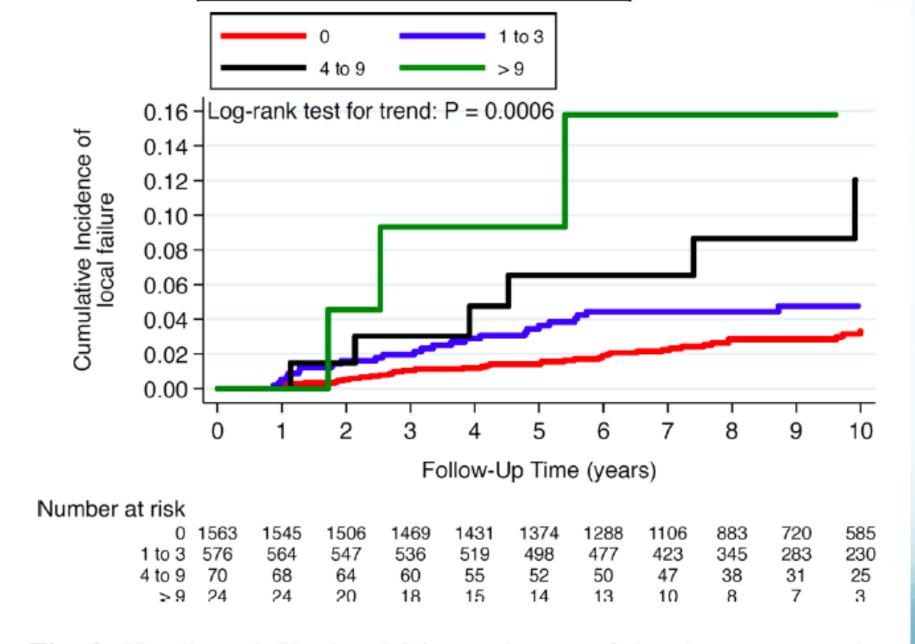
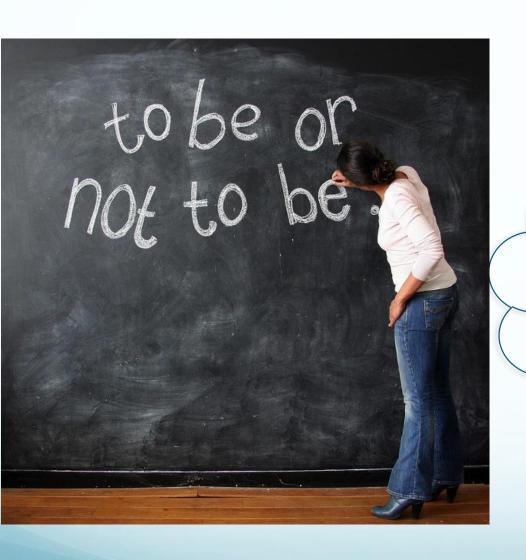
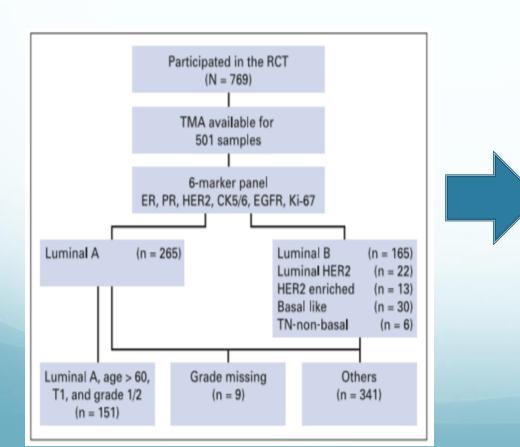



Fig. 3 Unadjusted Kaplan–Meier estimate of local recurrence by number of involved lymph nodes

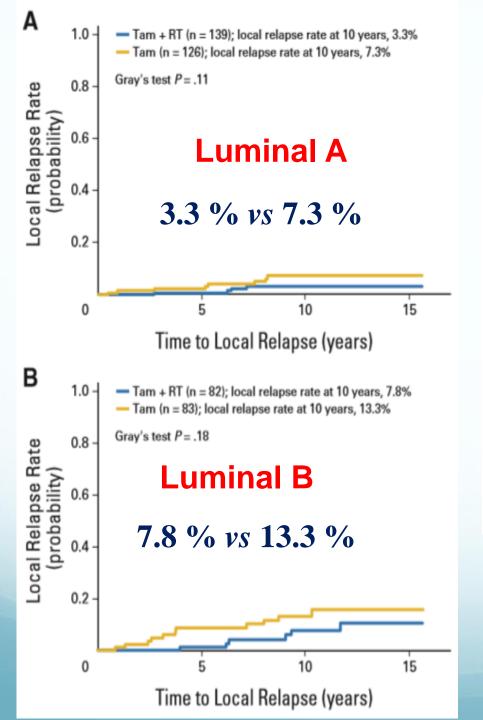
INTENSIFY
OR
DEINTENSIF
Y

- DESCALATING
- 1 LUMINAL A DISEASE
- 2 DCIS
- ESCALATING
- 3 TRIPLE NEGATIVE DISEASE
- 4 NODAL POSITIVE DISEASE


RT: 40 Gy in 16 fraz

+

Boost: 12.5 Gy in 5 fraz


Identification of a Low-Risk Luminal A Breast Cancer Cohort That May Not Benefit From Breast Radiotherapy

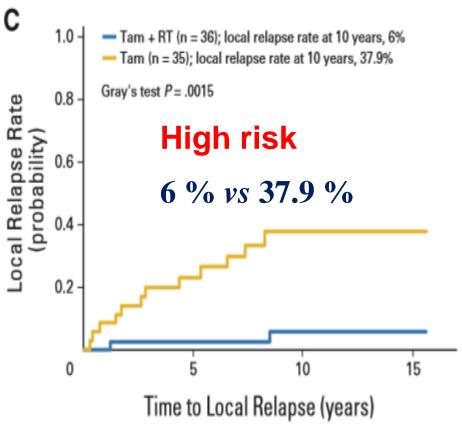

Fei-Fei Liu, Wei Shi, Susan J. Done, Naomi Miller, Melania Pintilie, David Voduc, Torsten O. N Sharon Nofech-Mozes, Martin C. Chang, Timothy J. Whelan, Lorna M. Weir, Ivo A. Olivotto, David R. McCready, and Anthony W. Fyles

Table 1. Distribution of Clinicopathologic Characteristics						
Characteristic	Patients (n = 501) HR					
Age, years						
50-60	130 (26%)					
> 60	371 (74%)					
Tumor size, cm*						
< 2	346 (69%)					
2-5	153 (31%)					
Grade†						
1 to 2	365 (77%)					
3	109 (23%)					
Treatment						
Tamoxifen + RT	257 (51%)					
Tamovifon	244 (49%)					
Subtype						
Luminal A	265	5.2				
Luminal B	165	10.5				
Other	71	21.3	< .001			

^{*}Two samples were missing information about tumor size. †Twenty-seven samples were missing information about grade.

Risk Group	No.	IBR at 10 Years (%)	95% CI	Р
LR clinical luminal A	151	3.1	1.2 to 8.2	
High-risk clinical/subtype	341	11.8	8.6 to 16.1	.006
LR clinical luminal A				
Tamoxifen + RT	77	5.0	1.6 to 15.0	
Tamoxifen	74	1.3	0.2 to 9.1	.42

Luminal A Low-risk:

- ✓ Age > 60 years
- ✓ T1
- ✓ G1-G2

Table 4. Multivariable	Analysis of IBR	Adding the	Clinical Risk Groups to
Treatment and	Intrinsic Subtype	(significant	variables shown)

Covariate	HR	95% CI	Р					
Tamoxifen + RT v tamoxifen	0.31	0.16 to 0.62	< .001					
Clinical risk groups	2.2	1.1 to 4.4	.025					
Luminal A v high risk	0.25	0.11 to 0.56	< .001					
Luminal B v high risk	0.51	0.24 to 1.05	.068					
Luminal A v luminal B	0.50	0.24 to 1.05	.069					
Overall			.0033					
Abbreviations: HR, hazard RT, radiotherapy.	ratio; IBR,	ipsilateral breast	relapse;					

IHC subtyping was prognostic for IBR but was not predictive of benefit from RT. Further studies may validate the exploratory finding of a low-risk luminal A group who may be spared breast RT.

Table 4
Reduction of ipsilateral breast tumour recurrences after radiotherapy in different subgroups.

Factor	Cumulative incidence of IBT	R, %	Difference % (95% CI)	
	Control $N = 587$	Radiotherapy $N = 591$		
All patients	23.9	11.5	12.4 (8.2, 16.6)	
Age group, years				
≤49	28.0	19.8	8.2 (-1.7, 18.1)	
50-59	24.0	13.2	10.8 (3.2, 18.4)	
60-69	23.8	9.0	14.8 (8.5, 21.1)	
≥70	16.7	2.8	13.9 (5.4, 22.4)	
Screening detection				
No	27.4	11.6	15.8 (8.8, 22.8)	
Yes	22.0	11.5	10.5 (5.5, 15.5)	
Tumour size, mm				
≤10	26.2	12.0	14.2 (7.5, 20.9)	
11-15	22.7	10.6	12.1 (5.4, 18.8)	
16-20	23.7	11.8	11.9 (2.3, 21.4)	
≥21	17.9	9.1	8.8 (-2.6, 20.2)	
ER status			, , ,	
Positive	26.1	9.9	16.2 (10.8, 21.6)	
Negative	19.0	11.7	7.3 (-2.6, 17.2)	
Unknown	21.7	14.4	7.3 (-0.8, 15.5)	

IBTR, ipsilateral breast tumour recurrence; CI, confidence interval.

Table 1 Patient and tumor characteristics N (%) Patient and tumor characteristics Table 2 Treatment characteristics Treatment characteristics N (%) Age (yrs) Mean 64 Radiotherapy schedule Range 41 - 8646 Gy/20 fractions 378 (75) Laterality 40.05 Gv/15 fractions 125 (25) Left-sided 254 (52) Chemotherapy Right-sided 229 (46) Yes 75 (15) Histology No 418 (85) Ductal carcinoma 350 (70) Type of chemotherapy (75 pts) Lobular carcinoma 63 (12) FEC 13 (18) Tubular carcinoma 26 (5) AC 37 (49) Other 64 (13) TC 22 (29) Tumor size (mm) Other 3(4) Mean 13 Hormonal therapy Range 1 - 30Yes 466 (95) Pathological tumor stage No 27 (5) pT1a 35 (7) Type of hormonal therapy (466 pts) pT1b 158 (32) Tamoxifen 146 (31) pT1c 258 (51) Aromatase inhibitor 320 (69) pT2 52 (10) Trastuzumab Pathological nodal stage Yes 27 (5) pN0 397 (79) No 466 (95) pN1 84 (17) Biological type pNx 2 (4) 369 (73) Luminal A Grading

Luminal B

HER2-like

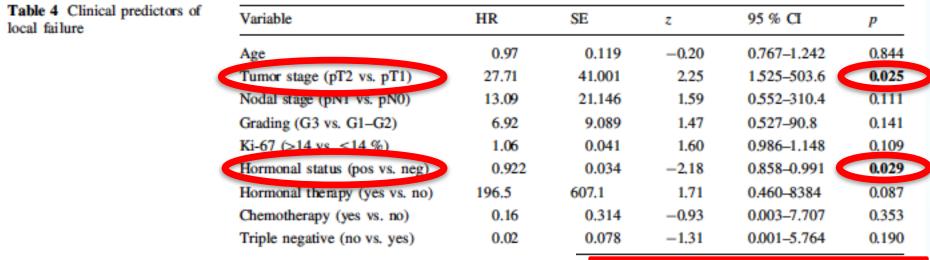
Triple negative

224 (45)

232 (46)

47 (9)

G1


G2

G3

83 (17)

32 (6)

19 (4)

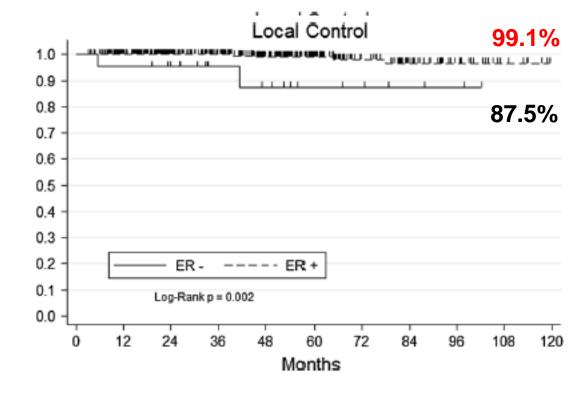


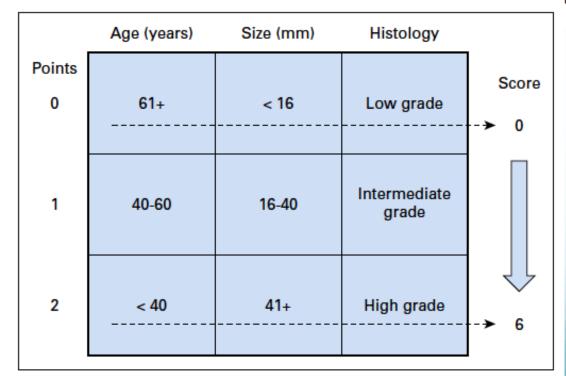
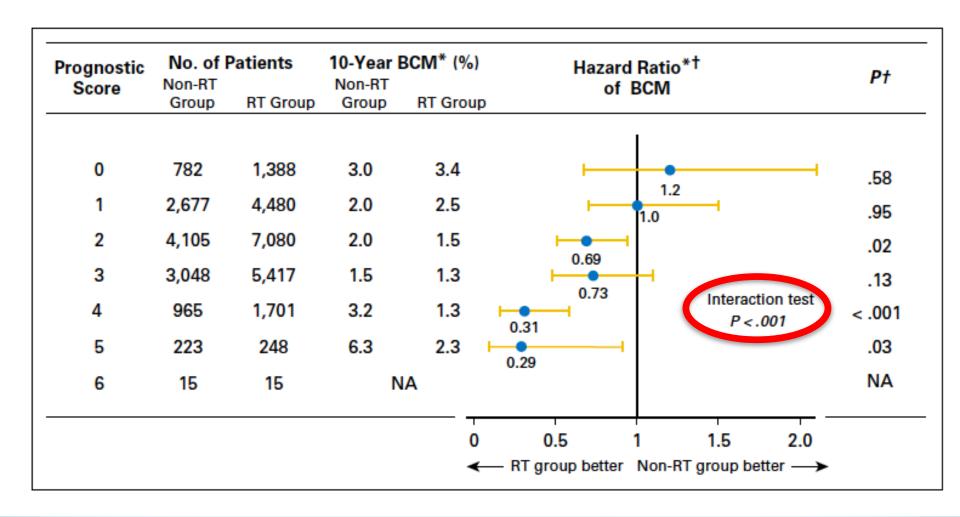
Fig. 3 Local control according to hormonal status

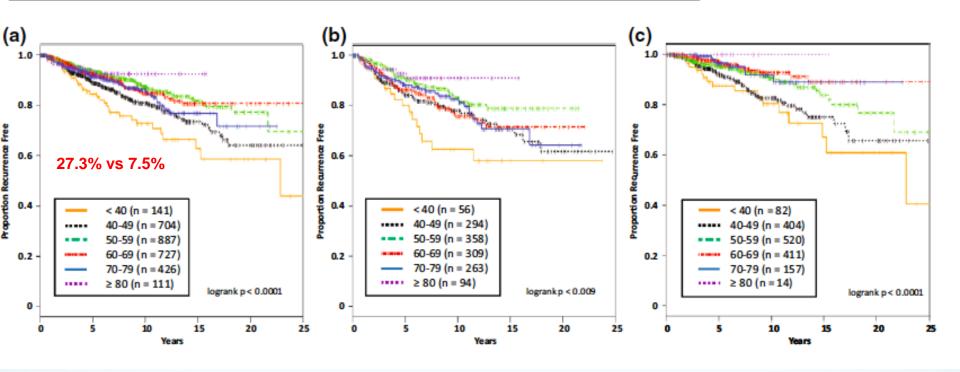
HF, with boost no delivered, is a safe and option effective for population of low-risk breast cancer A subgroup patients with larger and/or with tumors no estrogen receptor expression may potentially benefit from treatment intensification with a boost dose to the lumpectomy cavity.

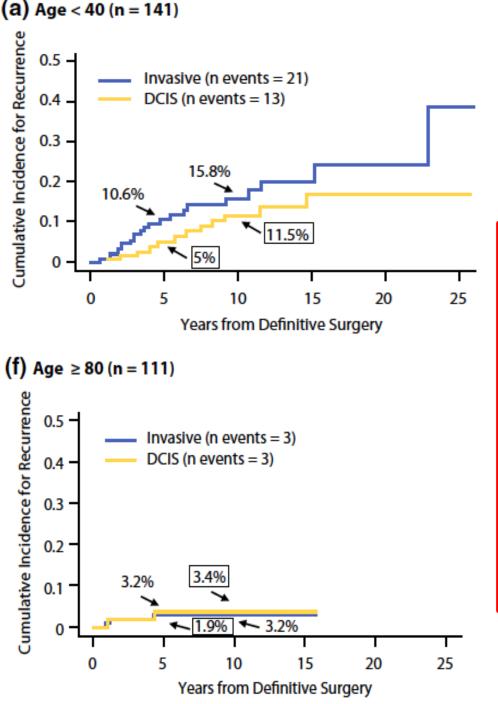
- DESCALATING
- 1 LUMINAL A DISEASE
- 2 DCIS
- ESCALATING
- 3 TRIPLE NEGATIVE DISEASE
- 4 NODAL POSITIVE DISEASE

Patient Prognostic Score and Associations With Survival Improvement Offered by Radiotherapy After Breast-Conserving Surgery for Ductal Carcinoma In Situ: A Population-Based Longitudinal Cohort Study

'ong, Fatih Aydogan,


Fig 1. Patient prognostic score: risk stratification. Modified from Smith et al. 20



RT improves survival in patients with higher NG, age younger than 60 years and tumor size > 1,6 cm.

SURGICALONCOLOGY

Women < 40 years of age were empirically at higher risk for invasive recurrence than DCIS recurrence (10-year invasive vs. DCIS risk: 15.8 vs. 11.5 %). In contrast, in all other age groups the risk of DCIS recurrence was at least as high as the risk of invasive recurrence. For both invasive and in situ

associated with an approximate 50 %

reduction in the risk of recurrence

RT

was

of

recurrences, the use

< 0.00004).

- DESCALATING
- 1 LUMINAL A DISEASE
- 2 DCIS
- ESCALATING
- 3 TRIPLE NEGATIVE DISEASE
- 4 NODAL POSITIVE DISEASE

Original Study

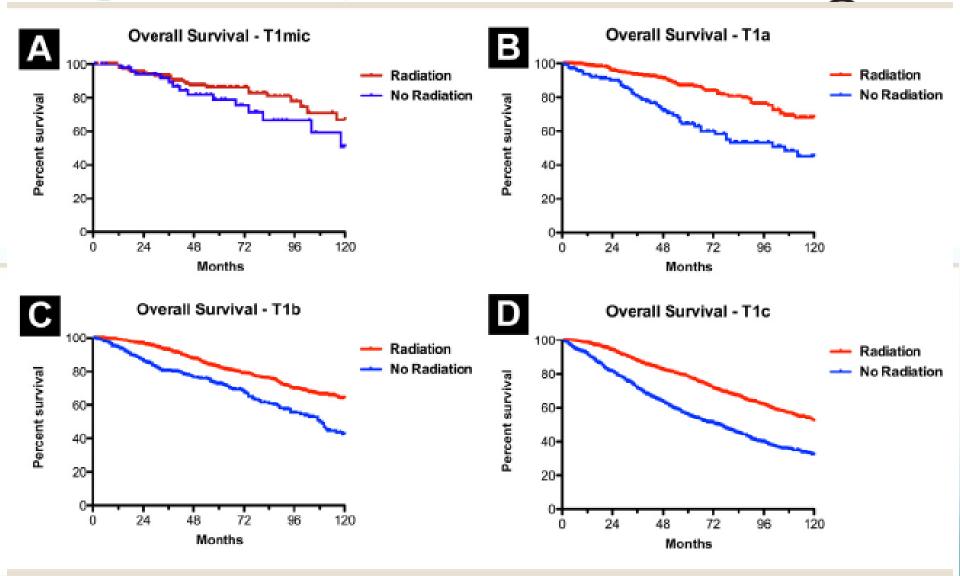
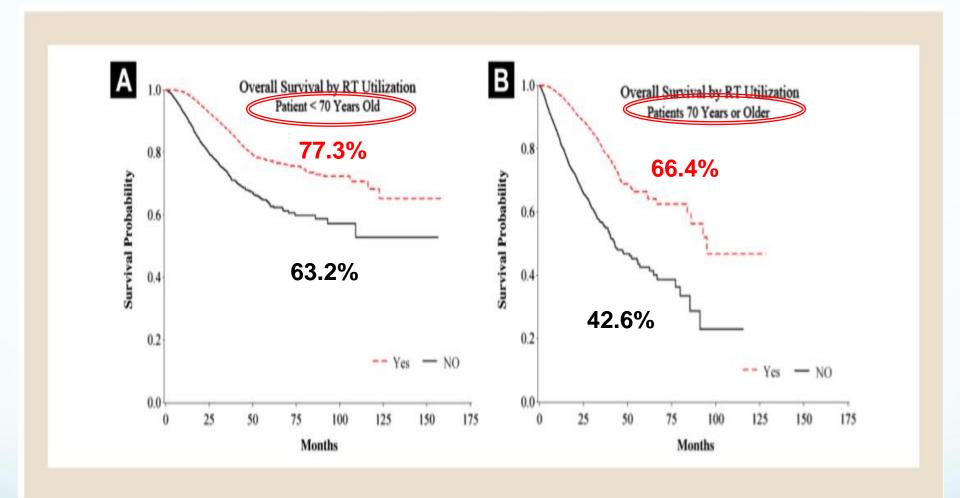


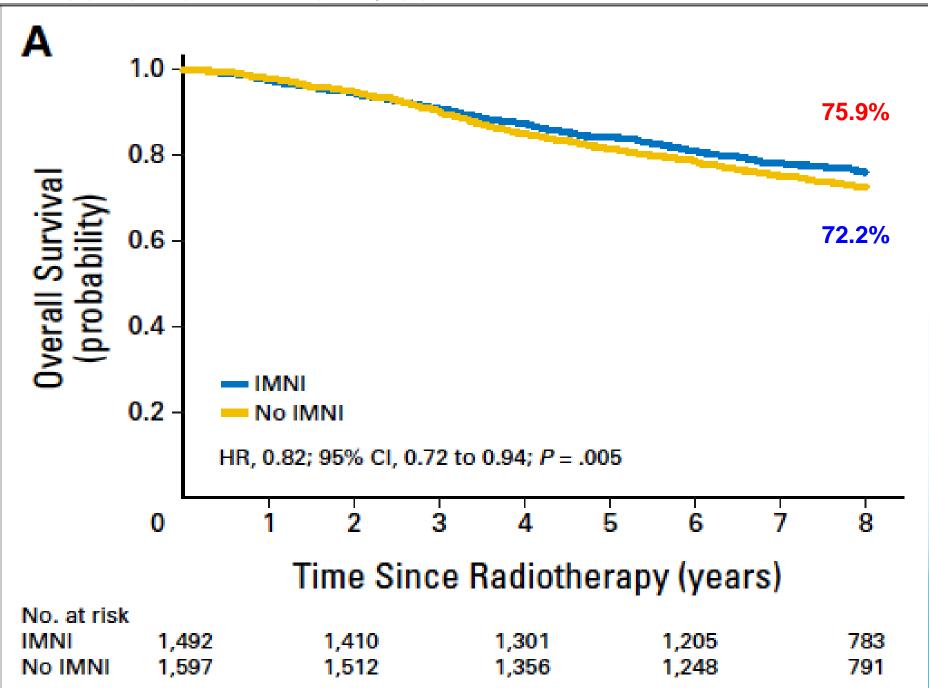
Table 3 Univariate Analysis of Survival Outcomes

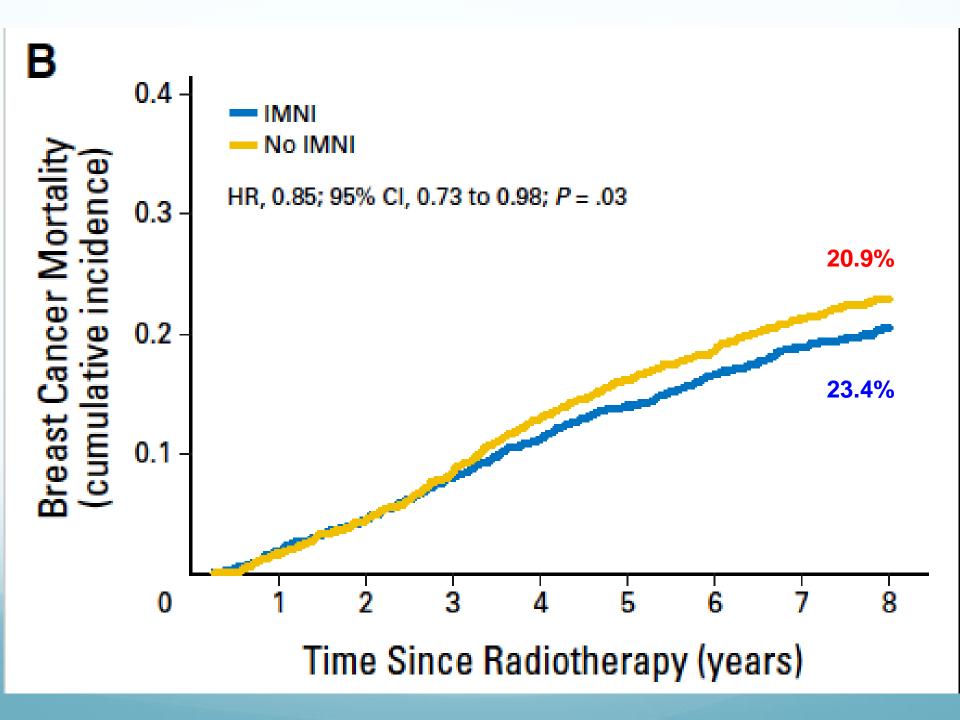

	Overall Survival			Ca	Cancer-Specific Survival		
	Hazard Ratio	95% CI	P	Hazard Ratio	95% CI	P	
Age	1.111	1.099-1.123	<.0001	1.069	1.048-1.090	<.0001	
Race			.101			.483	
White	Reference			Reference			
Black	1.114	0.938-1.321		1.190	0.876-1.617		
Other	0.775	0.574-1.046		0.904	0.540-1.515		
Grade			.037			.0002	
1	Reference			Reference			
2	1.199	0.960-1.499		2.097	1.182-3.719		
3	1.323	1.068-1.638		2.890	1.657-5.041		
4/undifferentiated	1.131	0.764-1.676		3.182	1.475-6.965		
PR status			.856			.253	
PR ⁺	Reference			Reference			
PR ⁻	0.983	0.813-1.188		1.265	0.844-1.894		
Laterality			.3883			.236	
Left	Reference			Reference			
Right	0.957	0.865-1.058		0.893	0.739-1.076		
T-stage			<.0001			<.0001	
T1mic	Reference			Reference			
T1a	1.155	0.806-1.654		1.476	0.638-3.412		
T1b	1.246	0.900-1.726		1.633	0.755-3.532		
T1c	1.895	1.381-2.599		3.583	1.694-7.576		
Radiation	2.073	1.869-2.297	<.0001	2.030	1.798-2.633	<.0001	

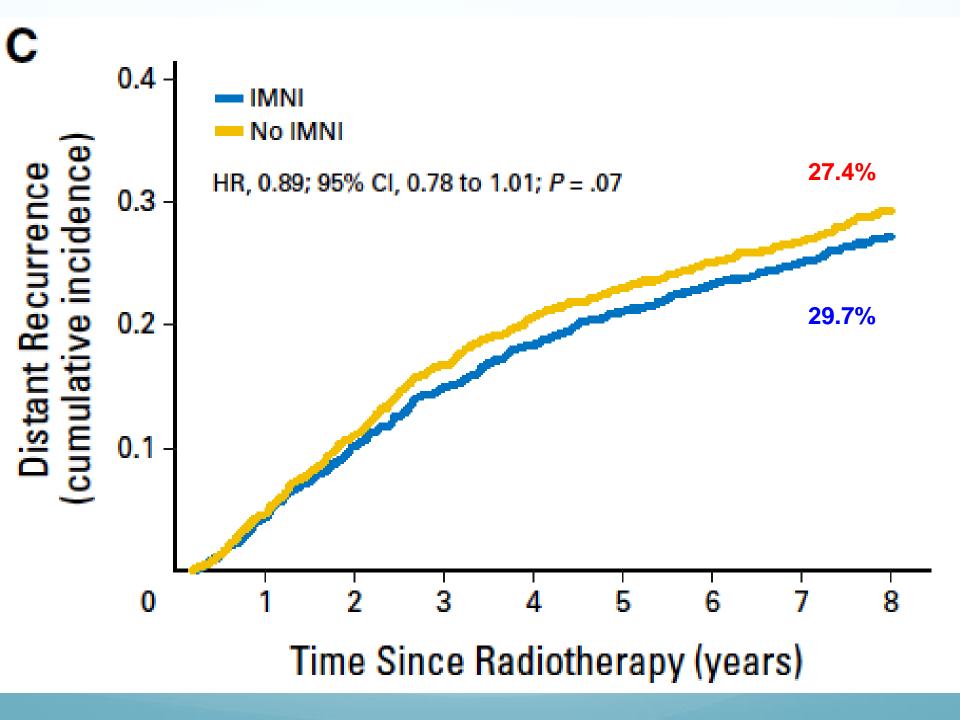
Radiotherapy in Patients 70 Years and Older With Triple-Negative Breast Cancer

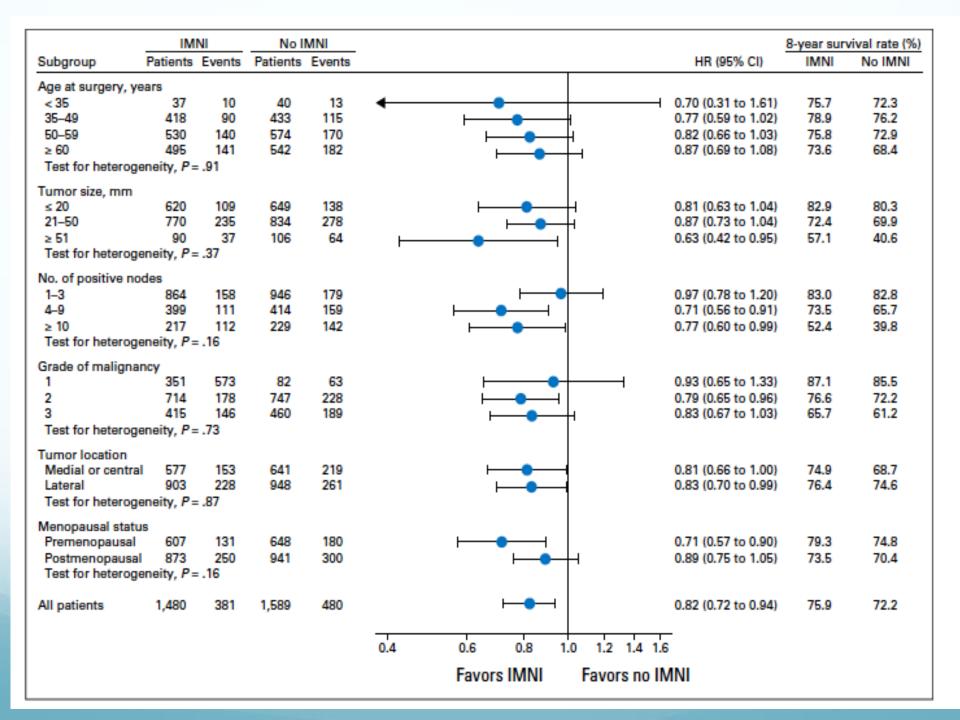
Ozer Algan, 1 Yan D. Zhao, 2 Terence Herman 1

Study	n	Follow-up	LRR (No RT)	LRR (RT)	RFS (No RT)	RFS (RT)	OS (No RT)	OS (RT)
Wang (2011) ¹⁴	681	86.5 months			74.6% (5 years)	88.3% ^a (5 years)	78.7% (5 years)	90.4% ^a (5 years)
Kyndi (2008) ¹⁵	1000	17 years (204 months)	32%	15%ª			32%	39%
Bayoumi (2014) ¹⁶	111	64 months (5-year results)	29.5% (5-year LR)	Versus 7% (5-year LR)	82%	94% ^a	51%	65% (P = .09)
Current Study								
All	44,731						56.7	75.5ª
Age <70 years	34,647						63.2	77.3ª
Age \geq 70 years	10,079						42.6	66.4ª


44731 pts 1998-2012; median age 59 (19-90);5570 >70 aa




Conclusion: In this group of high-risk patients, there was decreased use of RT in older patients. In our study of a large patient population with TNBC, RT was associated with increased OS rates in both younger and older patients, and RT should be strongly considered, when indicated by clinicopathologic factors, in patients with TNBC.


The results of our study demonstrate a continued role for RT in older patients diagnosed with TNBC.

- DESCALATING
- 1 LUMINAL A DISEASE
- 2 DCIS
- ESCALATING
- 3 TRIPLE NEGATIVE DISEASE
- 4 NODAL POSITIVE DISEASE

Contents lists available at ScienceDirect

- The time is ripe to make radiotherapy full adaptive by embracing the biological behaviour of tumours, considering their different potential and pathways for recurrence epage: www.elsevier.com/brst
- More personalized radiotherapy must replace the approach of "one Figure to hyrological advances to biological understanding: The main steps toward high-precision RT in breast cancer
- Mattentaknowledgesderived thromatudies based emainly ton, pathology Apather than one biology, Policy Parke Strend difficult to adapt treatment to the Barbara Aliga Jereczek-Fossa individual nation.

individual patient Radiotherapy Division, European Institute of Oncology, Milan, Italy

b Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy

^c Medical Physics Unit, European Institute of Oncology, Milan, Italy

^d Scientific Directorate, European Institute of Oncology, Milan, Italy

Table 2
Summary of radiosensitivity and pattern of recurrence. Molecular classifications of breast cancers are based on immunohistochemistry. Suggestion for therapeutic approaches is indicative. Decision —making for radiation techniques and volumes must integrate biological, clinical and pathological factors. True: any reappearance in the same quadrant as the primary tumour; Elsewhere: any reappearance of carcinoma in other quadrants; RT: radiotherapy; APBI: accelerated partial breast irradiation.

Molecular subtypes	Radiosensitivity	Locoregional recurrence rate	Pattern of recurrence	Possible therapeutic approach
Luminal A	High [3,4,11,25]	Low [3,4,11,25]	True [11,26–28,30,31,33,34]	Whole breast RT To discuss: - no RT [19] - dose descalation [12] - APBI [26,34]
Luminal B	Intermediate [3,4,11,25]	Intermediate [3,4,11,25]	True and elsewhere [26–28,34,57] Regional [31,53,54]	Whole breast RI To discuss: dose escalation [22] regional nodal RT [16,54]
HER2/neu positive	Low [3,4,11,25]	intermediate/high (post- and pre -trastuzumab) [3,4,11,25]	True [26,34,28] Regional [11,23,31,32]	- dose escalation [23,33] - regional nodal RT [16,18,31]
Basal-like/triple negative	Very low [3,4,11,25,58]	High [3,4,11,56,58]	True [28] and elsewhere [26,27,34,58] Regional [11,23,30,31,56,58]	vvnoie preast K1 To discuss: - regional nodal K1 [16,18,29,31] - dose escalation [22,23] - radiosensitizers [25]

Grazie per l'attenzione

