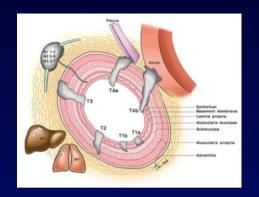
APPROPRIATEZZA DELL'IMAGING NEI TUMORI DELL'ESOFAGO

INCONTRO CON GLI ESPERTI XIV EDIZIONE **APPROPRIATEZZA DELL'IMAGING** NELLA DIAGNOSTICA E RADIOTERAPIA **DEI TUMORI GASTROINTESTINAL** Università degli Studi Presidenti Onorari Magnifico Rettore Prof. Carmine DI ILIO Prof. Giampiero AUSILI CEFARO Presidenti del Congresso Prof. Antonio Raffaele COTRONEO Prof. Domenico **GENOVESI** Università "G. d'Annunzio"

Appropriatezza nella Radiologia

Avanzata e prospettive future

nei Tumori dell'Esofago



Complementary role of multimodality imaging in the management of patients

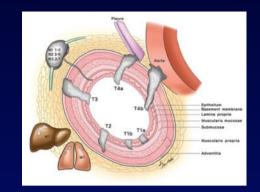
Central role of radiology in the era of «Clinical decision making»

Structured report for staging and restaging oesophageal cancer

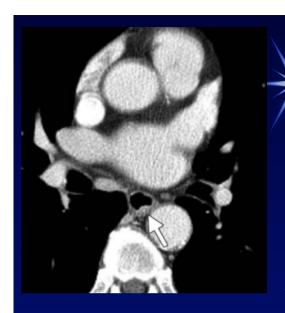
Invasive Oesophageai carcinoma

Outcome predictors and Aims of Staging

- Parietal Invasion (T stage)
- Lymphatic Invasion (N stage)
 - Regional vs Distant lymph nodes
- Metastatic Disease (M stage)
- > Vascular Invasion
- Operative margin involvement (CRM)

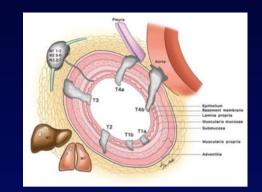

Surgery

Neoadjuvant therapies


Palliative treatment

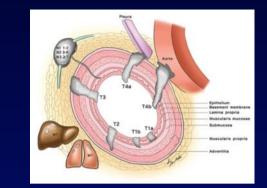
Endoscopic therapies

Optimising pre-treatment staging allows correct patient management algorithm

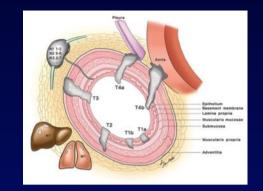


Multiple imaging modalities

 \overline{MDCT}

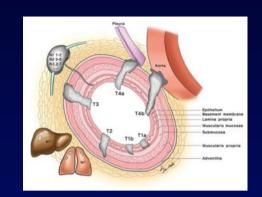

Primary staging investigation

✓ First musketeer


MDCT

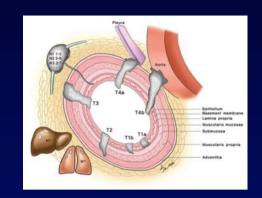
- Key objectives
- ✓ Define tumour position/extent/length
 - Circumferential Resection Margin
- ✓ Identify local invasion /lymph node enlargement
- ✓ Identify metastatic spread
- ✓ Determine the degree of oesophageal obstruction and associated complications
- ✓ Evaluate treatment response «Downstaging»

MDCT Structured Report


- Primary tumour
- Annular/Semi-annular/Polypoidal/Ulcerating
- Total cranio-caudal length tumour () mm
- Tumour position: Upper/Mid/Lower S1/S2/S3 Junctional T
- Maximal tumour thickness () mm
- Extramural spread Yes/No Depth () mm
- Nearest CRM is.....

MDCT Structured Report

- > Involved regional lymph nodes
- Peri-oesophageal Yes/No Number ()
- Mediastinal Yes/No Number ()
- Left gastric
 Yes/No
 Number ()
- Celiac axis Yes/No Number ()
- Involved non regional lymph nodes Yes/No Location (outside surgical field from cervical perioesophageal to celiac nodes)


MDCT Structured Report

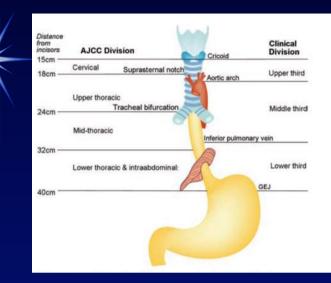
Peritoneal involvement Yes/No

Liver Metastases
Yes/No

Pulmonary Metastases Yes/No

MDCT Structured Report

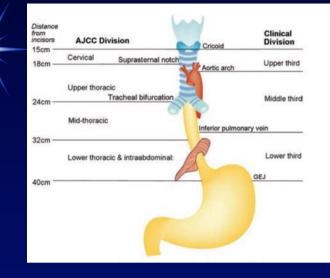
Conclusion


Position

Upper/Mid/Lower

Potential CRM

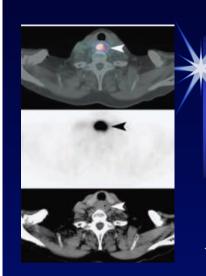
Safe/at risk


Tumor location

- 1) Cervical
- 2) Thoracic
- Upper
- Middle
- Lower
- 3) Abdominal
 - Involving GOJ: Junctional tumours

Location is defined by upper extent tumour

Tumor location


Location of primary tumour does not necessarily affect prognosis

BUT

Determines subsequent treatment regime

Junctional tumours

Multiple imaging modalities

PET/CT

✓ Second musketeer

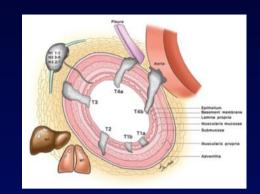
Detects unexepected metastases in 5-28% of

patients (bone metastases, lymph nodes etc)

Multiple imaging modalities

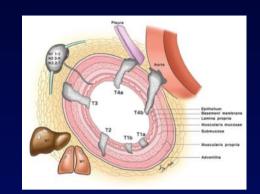
EUS

✓ Third musketeer


Guidelines suggest mandatory for local staging in

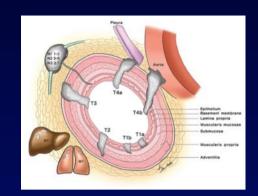
the non metastatic patients

Problem solving tool

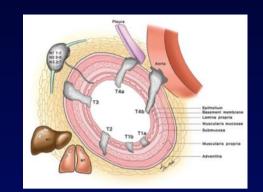

resectable tumour: what about lymp nodes detected by CT?

Junctional tumours: extension to crura

MULTIMODALITY IMAGING ALGORITHM


- > MDCT
- First line staging modality
- Advanced loco-regional disease and/or metastatic disease
 - No further investigations
- Assessment disease response neo-adjuvant treatment

MULTIMODALITY IMAGING ALGORITHM

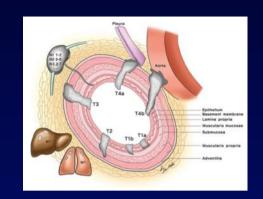

- > EUS
- Local staging
- Pragmatic problem solving: T1a vs T1b/T3vs T4a/b

MULTIMODALITY IMAGING ALGORITHM

- > PET/CT
- Initial staging in potentially resectable patients
- Assessment of treatment response
- Detection of recurrent disease

Multidisciplinary team

management is critical to


optimal patient outcome

em

bronenus

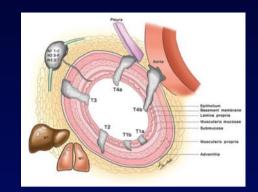
M

What about the Future?

> Pre-Treatment

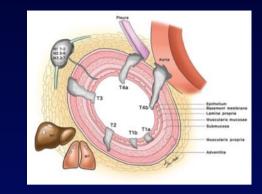
> Post-Treatment

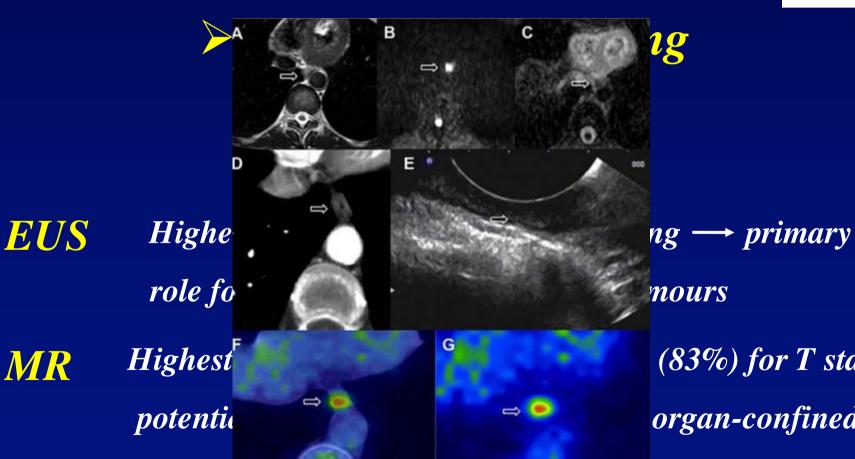
DWI


DWI

Tensor MRI

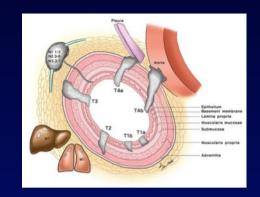
Perfusion CT


PET/MRI



> Pre-Operative staging

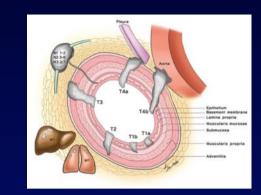
- <u>Br J Radiol.</u> 2016 Dec;89(1068):20160087. Epub 2016 Oct 21.
- Prospective comparison of MR with diffusion-weighted imaging, endoscopic ultrasound, MDCT and positron emission tomography-CT in the pre-operative staging of oesophageal cancer: results from a pilot study.
- Giganti F^{1,2}, Ambrosi A², Petrone MC³, Canevari C⁴, Chiari D^{2,5}, Salerno A^{1,2}, Arcidiacono PG³, Nicoletti R¹, Albarello L⁶, Mazza E⁷, Gallivanone F⁸, Gianolli L⁴, Orsenigo E⁵, Esposito A^{1,2}, Staudacher C^{2,5}, Del Maschio A^{1,2}, De Cobelli F^{1,2}



MR

where i

(83%) for T staging \longrightarrow organ-confined tumours es were not satisfactory

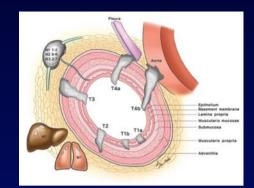

> Pre-Operative staging
18 pts

N staging

MR and EUS

Higher sensitivity than MDCT but none of the three techniques had satisfactory results in terms of specificity and accuracy

> Pre-Operative staging


10 --4-

CONCLUSION:

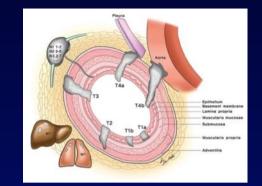
In this pilot study, we have shown that MR with DWI could enrich the current pre-operative work-up for oesophageal cancer and could be used for T and N staging. However, larger studies will need to be carried out before introducing this technique in the standard diagnostic pathway, in order to understand if MR with DWI could change its management and replace more costly or invasive tests such as PET-CT or EUS

> Pre-treatment staging

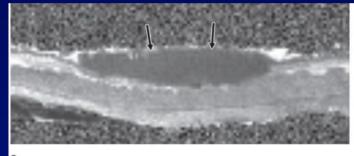
Esophageal Carcinoma: Ex Vivo

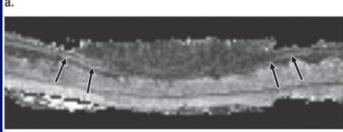
Evaluation with Diffusion-Tensor MR Imaging and Tractography at 7 T¹

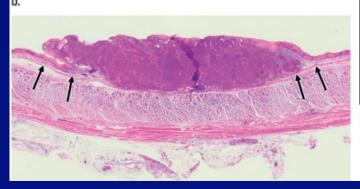
Purpose:

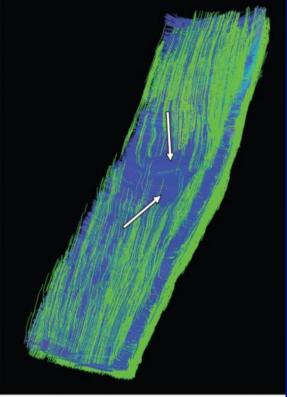

To determine the feasibility of diffusion-tensor magnetic resonance (MR) imaging and tractography as a means of evaluating the depth of mural invasion by esophageal carcinomas. Results:

In all 20 carcinomas (100%), the diffusion-weighted images, apparent diffusion coefficient (ADC) maps, fractional anisotropy (FA) maps, λ_1 maps, and directionencoded color FA maps made it possible to determine the depth of tumor invasion of the esophageal wall that was observed during histopathologic examination. The λ_1 maps showed the best contrast between the carcinomas and the layers of the esophageal wall. The carcinomas had both lower ADC values and lower FA values than the normal esophageal wall; thus, the carcinomas were clearly demarcated from the normal esophageal wall. Diffusiontensor tractography images were also useful for determining the depth of tumor invasion of the esophageal wall.

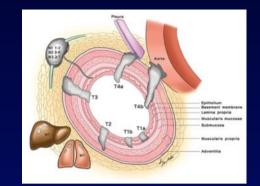

Conclusion:


Diffusion-tensor MR imaging and tractography are feasible in esophageal specimens and provide excellent morphologic data for the evaluation of mural invasion by esophageal carcinomas.


Radiology: Volume 272: Number 1—July 2014



> Pre-treatment staging

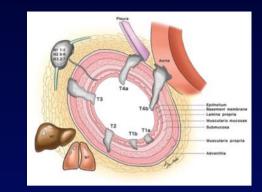


Esophageal Carcinoma: Ex Vivo Evaluation with Diffusion-Tensor MR Imaging and Tractography at 7 T¹

Radiology: Volume 272: Number 1-July 2014

> Pre-treatment staging

Clinical Implication of PET/MR Imaging in Preoperative Esophageal Cancer Staging: Comparison with PET/CT, Endoscopic Ultrasonography, and CT


Geewon Lee*1,2, Hoseok I*2,3, Seong-Jang Kim^{2,4}, Yeon Joo Jeong^{1,2}, In Joo Kim^{2,5}, Kyoungjune Pak^{2,4}, Do Yun Park^{2,6}, and Gwang Ha Kim^{2,5}

J Nucl Med 2014; 55:1242-1247

DOI: 10.2967/jnumed.114.138974

19 patients

Identification of oesophageal wall layers

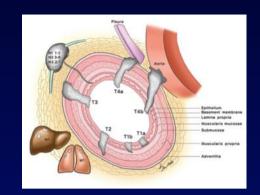
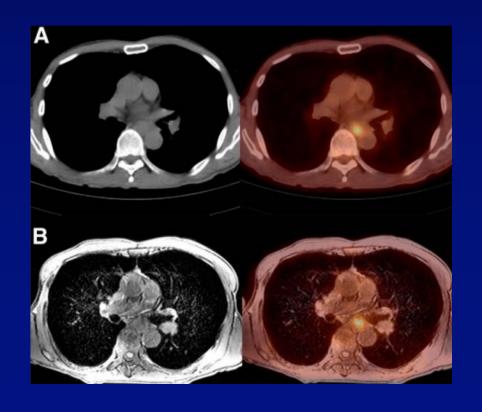

> Pre-treatment staging

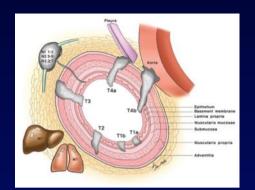
TABLE 4 Diagnostic Accuracy for Primary Tumor Staging										
		Acc	uracy	P						
Stage	EUS	СТ	PET/MR imaging	EUS vs. CT	EUS vs. PET/MR imaging	CT vs. PET/MR imaging				
Total	86.7	33.3	66.7	0.021	0.375	0.063				
T1	86.7	46.7	80.0	0.070	>0.990	0.063				
T2	86.7	53.3	73.3	0.125	0.625	0.250				
T3	93.3	86.7	86.7	0.500	0.500	>0.990				

PET-MR demonstrated acceptable accuracy for T staging, compared with EUS and, although not statistically significant, even higher accuracy than EUS and PET-CT for prediction of N staging


N staging PET-MR 83,3%, EUS 75%, PET-CT 66,7%,

MDCT 50%

➤ Pre-treatment staging


PET-MR

Limits

Adjustments in protocols

Low machines availability

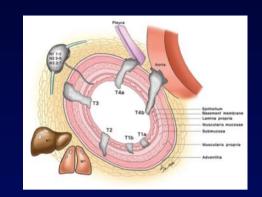
> Post treatment restaging

Radiotherapy and Oncology 115 (2015) 163-170

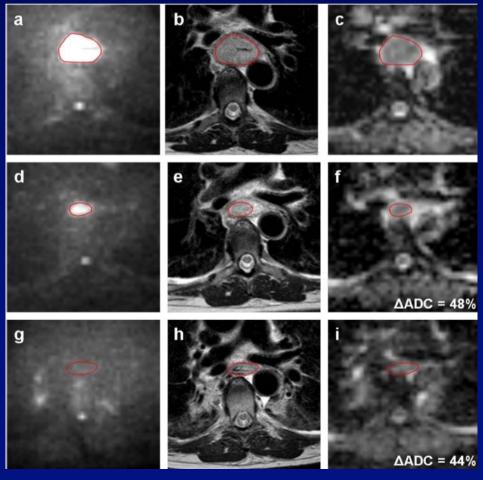
Contents lists available at ScienceDirect

Radiotherapy and Oncology

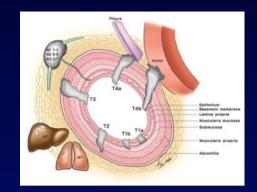
journal homepage: www.thegreenjournal.com


MRI in esophageal cancer

Diffusion-weighted magnetic resonance imaging for the prediction of pathologic response to neoadjuvant chemoradiotherapy in esophageal cancer $^{\,\,\!\!\!/}$



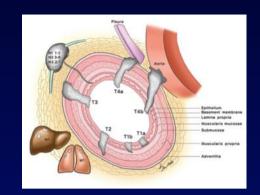
Peter S.N. van Rossum ^{a,b}, Astrid L.H.M.W. van Lier ^a, Marco van Vulpen ^a, Onne Reerink ^a, Jan J.W. Lagendijk ^a, Steven H. Lin ^c, Richard van Hillegersberg ^b, Jelle P. Ruurda ^b, Gert J. Meijer ^{a,*,1}, Irene M. Lips ^{a,1}


> Post treatment restaging

Before nCRT

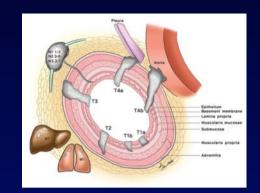
During nCRT

After nCRT



> Post treatment restaging

- ✓ Pathological CR or good response status could be predicted by the change in tumour ADC early during neoadjuvant treatment (as in rectal, brain cancer etc)
- ✓ Early ADC changes (two to three w) during nCRT are more predictive of pathCR than late ADC changes after completion of nCRT


> Post treatment restaging DWI

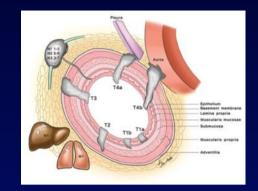
- ✓ No significant association between initial ADC and response
- ✓ Significant association between higher initial ADC values in non responders → presence of necrotic areas which are less responsive to cytotoxic treatments

Van Rossum P et al Radiotherapy and Oncology 2015

De Cobelli F et Eur Radiol 2013

Eur Radiol. 2013 Sep;23(9):2492-502. doi: 10.1007/s00330-013-2844-8. Epub 2013 May 4.

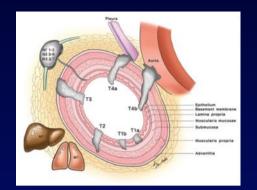
Accuracy of multidetector-row CT for restaging after neoadjuvant treatment in patients with oesophageal cancer.


Konieczny A¹, Meyer P, Schnider A, Komminoth P, Schmid M, Lombriser N, Weishaupt D.

Exclude disease progression

CONCLUSION:

Although MDCT tends to be able to exclude advanced tumour stages (T3, T4) with a higher likelihood, the diagnostic accuracy of high resolution MDCT for restaging oesophageal cancer and assessing the response to neoadjuvant therapy has not improved in comparison to older-generation CT. Therefore, the future assessment of oesophageal tumour response should focus on combined morphologic and metabolic imaging.



> Post treatment restaging
Perfusion CT

✓ Blood flow blood volume MTT significantly correlated with the tumor regression grade → to incorporate lowdose CTp study into regular CT examination protocol due to restaging purposes

Imaging Appropriateness

Clinical Setting	Guidel ine Page	Categ ory of Evide nce	Sta ge	Indication	Imaging Recommendation	Purpose	Imaging Notes
Esophageal and Esophagogastric Junction Cancers	ESOPH -1	<u>2°</u>		Initial workup		c/Staging	EUS if no evidence of M1 disease. EUS performed prior to any treatment is important in the initial clinical staging of neoplastic disease. PET/CT if no evidence of M1 disease. Review CT and PET scans prior to EUS to become familiar with nodal distribution for possible fine-needle aspiration (FNA) biopsy.