INCONTRO CON GLI ESPERTI XIV EDIZIONE

APPROPRIATEZZA DELL'IMAGING NELLA DIAGNOSTICA E RADIOTERAPIA DEI TUMORI GASTROINTESTINALI

Presidente Onorario Prof. Giampiero AUSILI CÈFARO

Presidenti del Congresso Prof. Antonio Raffaele COTRONEO Prof. Domenico GENOVESI

23 e 24 FEBBRAIO 2017

Eventoin, 3738 - 179449 ed. 1.

Modico Chinargo (Anatornia Patologica,

Chiturgia Ganoraia, Chiturgia Toraclea,

Craditi Formativi n. 9,8. Il Congresso è stato accreditato

perin, 150 Partarbarti-

lastrikatorokola Madeirik

o di urganza, Modicina Ganatala

Modisina Nusiaata, Dricologia, Organizzaziona dai servisi senitari di teev

Lines Galda Protocolli Procedure

à necessario rispettare gli orari come de programme.

Per l'attenimento dei crediti formativi

Oblativo Formativo

(medici di tarriglia), Madicina Intorna

Radiodiamostica, Radiotorapita); Fisico (Fisica Sanitarta); Tecnico Sanitarto di Radiotosta Mosteva

a chiturgia di accottazione

Sala Convegni Ce.S.I. Fondazione Università "G. d'Annunzio" Chieti-Pescara Via Luigi Polacchi, 11 Chieti Scalo

Seguriaria Solartilica Morias Di formasa Luciaria Carvetta Fransessa Funtti Soptanta Santori Rebolta Carvet Bantara Santol Cantala Santoli Cheoritalese al Congresso Lineritana la gratuta Par tella certabana la Seguriaria Organizzativa.

Site Wab I programms dol Congrazzo è depontate un inswww.ristneorgnassi.it www.ristneorgnassi.it

Providar ECM 3738 e Sepretaria Organizzative Mos Sole Mosting Via Cassara Batteti, 31 E5/22 Prozess bil 085:255165 Fia:065-255165 Fia:065-255165 mb/Whenevorg.test.bt max reservorgent b

Patrocini

20 10

Biomarkers predittivi di risposta al trattamento radiochemioterapico: studio pilota monoistituzionale

Francesca Perrotti Istituto di Radioterapia Oncologica Chieti

BACKGROUND: Translational Research

 Refers to the "from bench to bedside" enterprise of harnessing knowledge from basic sciences to produce new drugs, devices and treatment options for patients.

IMPROVED

HEALTH

TRANSLATION

Of new knowledge

into clinical practice

 Effective translation of the new knowledge, mechanisms and techniques generated by advances in basic science research into new approaches for prevention, diagnosis and treatment of disease is essential for improving health.

DATA DRIVEN APPROACH

This approach consider a large number of data which allows "hypothesis generating" rather than "hypothesis driven" method.

BACKGROUND: LIPIDOMICS Phopholipids and cancer

Lipids play many essential roles in cellular functions:

- survival,
- Proliferation,
- death.

They are involved in:

- chemical-energy storage,
- cellular signaling,
- cell membranes,

Energy

storage

cell-cell interactions.

Review

Advances in Lipidomics for Cancer **Biomarkers Discovery**

Francesca Perrotti ^{1,2}, Consuelo Rosa ^{1,2}, Ilaria Cicalini ^{3,4,5}, Paolo Sacchetta ^{4,5}, Piero Del Boccio ^{3,4,5}, Domenico Genovesi ^{1,2} and Damiana Pieragostino ^{4,5,*}

1. Cell Survival

Astigarraga et al., 2008; Shevchenko & Simons, 2010; Wenk et al. 2005

BACKGROUND: Data driven approach

1. Discovery study:

NON-TARGETED profiling by sophisticated bioinformatic tools

1. Discovery study:

NON-TARGETED profiling by sophisticated bioinformatic tools

APPROCCIO CLASSICO

FASE QUANTITATIVA Separazione cromatografica

....SUMMARIZING....

Serum lipidomic study reveals potential early biomarkers for predicting response to chemoradiation therapy in advanced rectal cancer: A pilot study

Piero Del Boccio ^{a,b}, Francesca Perrotti MD ^{c,d}, Claudia Rossi ^{b,e}, Ilaria Cicalini ^{a,b}, Sara Di Santo MD ^{c,d}, Mirco Zucchelli ^b, Paolo Sacchetta ^{b,d}, Domenico Genovesi ^{c,d},

In press

Purpose:

 ✓ to highlight a typical lipidomic signature, able to predict tumor response to chemoradioterapy in patients with advanced rectal cancer

Personalized treatment

Damiana Pieragostino b,e,*

pCR after CRT demonstrated a significantly improved prognosis with implications for an organ preservation strategy.

For non-responding patients, other therapeutic strategies should be considered, without delaying surgery and sparing patients from useless and potentially toxic CRT

Maas M, J Clin Oncol. 2011; 29: 4633-40. Pucciarelli S, Dis Colon Rectum. 2013; 56: 1349-56.

Translational relevance

LIPIDS are fundamental mediators of inflammation, proliferation, and apoptosis.

The involvement of lipids in **radioresistance of rectal cancer** is also demonstrated by the *modulation of lipid bindings proteins.*

Schneider G, MCR. 2014; 12:1560-73. Qiu J, PloS one. 2014;9:e90062. Long J, Tumour biology. 2015.

Materials and methods: Experimental Design

Materials and methods

Patients characteristics

10 pts: NRP

8pts: RP

TRG scale according to Mandard's classification

PTs	STADIO CLINICO	VOLUMI: PELVI + BOOST	TRG (sec. Mandard)	CATEGORIA
1	IIIB	CONCOMITANTE	2	RESP
2	IIIB	CONCOMITANTE	1	RESP
3	IIIA	CONCOMITANTE	2	RESP
4	IIIB	CONCOMITANTE	4	NON RESP
5	IIIA	SEQUENZIALE	2	RESP
6	IIIB	SEQUENZIALE	3	NON RESP
7	IIIB	CONCOMITANTE	4	NON RESP
8	IIIB	SEQUENZIALE	2	RESP
9	IIIB	SEQUENZIALE	1	RESP
10	IIIB	CONCOMITANTE	2	RESP
11	IIIB	CONCOMITANTE	4	NON RESP
12	IIIB	SEQUENZIALE	2	RESP
13	IIIB	SEQUENZIALE	2	RESP
14	IIIb	CONCOMITANTE	3	NON RESP
15	IIIB	CONCOMITANTE	3	NON RESP
16	IIIB	CONCOMITANTE	3	NON RESP
17	Ш	CONCOMITANTE	2	RESP
18	IIIB	CONCOMITANTE	3	NON RESP
19	IIIB	CONCOMITANTE	3	NON RESP

Materials and methods

2.Data acquisition

PEs:8761 signals

PCs, SMs:1974 signals

PSs: 14243 signals

PGs: 9653 signals

... complicated especially for PGs and PSs by a vast amount of **noise**, artifacts like electronic spikes resulting in redundancy of the data

Results: PLS-DA models from RP and NRP at T=0

Results

3 Statistical analysis				Not Responders		Responders		Duralura
S.Statistical analysis	CLASS							P value
and bioinformatics		RT_m/z	VIP	Mean	St.Dev	Mean	St.Dev	tTestValue
	PSs	13.60_782.52	2.35	48.23	37.83	104.02	52.04	0.018
₩		15.05_741.50	2.44	11.11	9.65	24.79	11.20	0.013
		12.92_879.50	2.45	3.65	7.03	18.01	14.25	0.013
Determine		12.84_815.03	2.49	2.95	5.18	18.46	16.20	0.011
Statistical analysis Data processing		13.26_822.49	2.43	4.19	7.38	20.42	16.66	0.014
		17.99_600.69	2.13	2.40	3.97	10.04	9.65	0.036
		10.48_840.46	2.08	7.75	9.91	0.00	0.00	0.043
		13.03_844.46	2.78	12.36	10.11	0.00	0.00	0.003
Untargeted lipidomics study		13.45_786.54	2.50	11.73	10.59	0.71	2.03	0.011
from pre-treatment serum:		18.56_601.86	2.11	4.04	4.40	0.39	1.12	0.038
		13.09_874.69	2.04	7.73	8.80	0.76	2.16	0.045
65 differential		14.40_838.03	2.04	10.66	13.79	0.00	0.00	0.045
		12.85_841.74	2.12	0.81	2.56	8.56	10.51	0.038
metabolites		17.02_688.96	2.23	0.56	1.79	7.07	8.23	0.026
		14.85_596.55	2.26	0.55	1.74	9.20	10.95	0.025
12 for PC/SM class		13.81_716.64	2.22	0.78	2.46	6.97	7.66	0.028
1E for the DE class		16.79_744.77	2.01	2.48	3.29	0.00	0.00	0.050
		13.76_748.40	2.47	0.00	0.00	5.36	5.99	0.012
13 for the PG class,		10.50_467.35	2.23	0.00	0.00	4.43	5.76	0.026
25 for PS class.		14.58_798.73	2.29	0.00	0.00	3.66	4.59	0.022
		18.36_614.29	2.08	2.34	3.07	0.00	0.00	0.048
point		18.81_810.59	2.03	2.71	3.58	0.00	0.00	0.049
o time per		14.83_443.05	2.45	0.00	0.00	2.89	3.28	0.013
at T=U		19.61_732.99	2.43	0.00	0.00	3.20	3.68	0.014
		12 02 002 42	2.02	2.41	2.17	0.00	0.00	0.048

Results: HEATMAP

Overexpressed signals

Underexpressed signals

At TO, a number of 65 lipids were identified as significant with the criteria of VIP>1,5 and p<0.05 at the univariate test

at T=0 time point

2

1

0

-1

-2

-3

Results:	Potential by	biomarkers targeted LC-	valida ·MS/N	tion 1S ana	alysis	Target id candidate	entification: e biomarkers
Retention Time (min)	Mass (m/z) [M+H ⁺]	Common name	AUC	lower levels in NRP of 5 differentially expressed lipids (p<0.05)			
14.79	727.86	SM(d18:2/18:1)	0.77	_	SM(d18	3:2/18:1)	
16.14	496.22	Lyso PC(16:0/0:0)	0.92		LysoPC	(16:0/0:0)	
15.72	480.42	Lyso PC(15:1(9Z)/0:0)	0.9		LysoPC	(15:1/0:0)	
13.86	842.90	PC(20:0/20:2)	0.93		PC (40	:0)	
		PC(20:1/20:1)					
		PC(18:0/22:2)					He was
		PC(18:1/22:1)					and the second s
		PC(18:2/22:0)					NEWARKERS
		PC(16:1/24:1)					BIOW

11.08 528.61 Lyso PE(22:5/0:0) 0.78

Lyso PE (22:5/0:0)

Results: predictive power of the confirmed lipid pattern (T=0)

Predicted Class Probabilities

Results: data driven approach

Results: data driven approach

Lyso-PE is the unique signal that seems to modulate its expression in response to CRT.

We observed that the lyso-PE level significantly increases in NRP in respect to RP during the CRT, suggesting its role in **response inhibition**.

human phosphatidylethanolamine-binding protein 4 (hPEBP4) ->inhibition of apoptosis

Li P, International journal of molecular medicine. 2006;18:505-10.

hPEBP4 is a predictive marker for the pathological response of rectal cancer to radiotherapy, because it promotes the radioresistance of human rectal cancer by activating Akt in an ROS-dependent way
Qiu J, International journal of colorectal disease. 2013;28:241-6.

Results: data driven approach

PC40 is significantly **lower in NRP** sera in respect to RP ones before and during the whole treatment.

The different levels of PCs may be explained by the **modulation of enzymes** that control anabolic and catabolic pathways .

- PLD high expression carcinoma had significantly poorer survival than those with PLD low expression carcinoma
- ✓ elevation of PLD expression and activity in human CRC.

Saito M, Oncology reports. 2007;18:1329-34. Oshimoto H, Oncology research. 2003;14:31-7.

✓ Plasmatic levels of different lysoPC forms (including the 16:0)
 are significantly reduced in CRC in respect to healthy controls.

Zhao Z, JCO. 2007;25:2696-701.

- ✓ **S1P** induces cell **proliferation**, angiogenesis and trigger cell motility.
- Iower levels of SM in NRP could underlie high levels of S1P, sustained by an overexpression of SPhK1 in colorectal cancer.

Hannun YA, The Journal of biological chemistry. 2011;286:27855-62.

Long J,et al. Tumour biology. 2015.

Conclusions:

1. Personalized treatment

2. To confirm results in *indipendent set of validation*

- 3. Cost-benefit analysis :
 - Invasive procedure?
 BEINIEIFIIITIS
 - Time consumig?
 - Costs?

Sample size...*overparametrization risk* → multicentric research?

Grazie per l'attenzione!