

Sabato 27 Novembre 2021

RADIOTERAPIA OGGI E DOMANI, 20 (+1) anni della U.O.C. di Radioterapia dell'Ospedale Manzoni di Lecco

Politecnico di Milano – Polo Territoriale di Lecco – Aula Magna Via G. Previati 1/c—Lecco

Stato dell'arte, problematiche attuali e prospettive future RADIOTERAPIA STEREOTASSICA

Barbara Alicja Jereczek-Fossa MD PhD

Istituto Europeo di Oncologia IRCCS, Milano Università degli Studi di Milano

DISCLOSURES

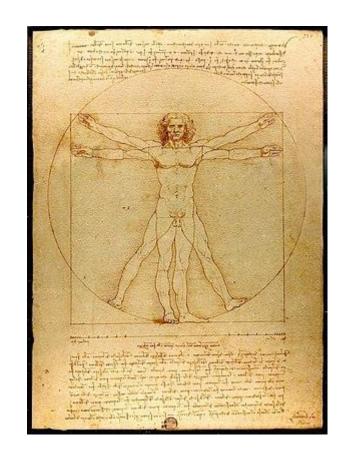
ALL OUTSIDE THE CURRENT LECTURE:

Research funding:

AIRC Italian Association for Cancer Research (institutional grants),

FIEO-CCM & FUV (institutional grants)

Accuray (institutional grant)


Travel expenses or speaker fees:

Janssen, Ferring, Bayer, Roche, Astellas, Elekta, Carl Zeiss, Ipsen, Accuray, IBA

AGENDA

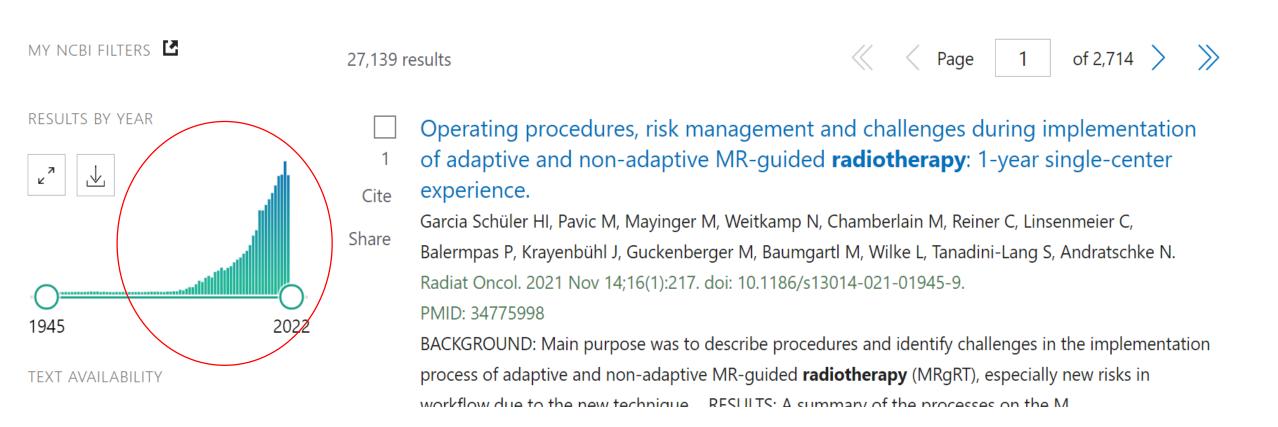
- □ SBRT and SRS
- □ Brain
- □ Thorax
- □ Abdomen/pelvi
- □ Particular scenarios:

oligometastases, re-irradiation



https://en.wikipedia.org/wiki/Vitruvian_Man #/media/File:Da_Vinci_Vitruve_Luc_Viatou r.jpg

Game changer

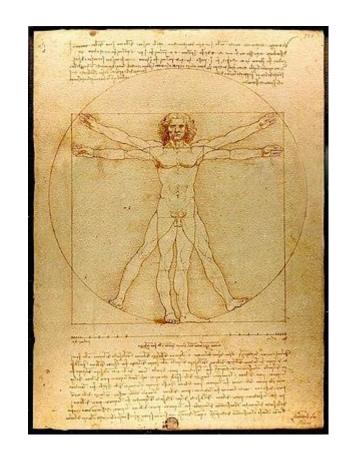


https://www.cuf.pt/en/cuf-services/international-cuf/medical-offerhttps://commons.wikimedia.org/wiki/File:Gamma-knife-cuf.jpg

Game changer

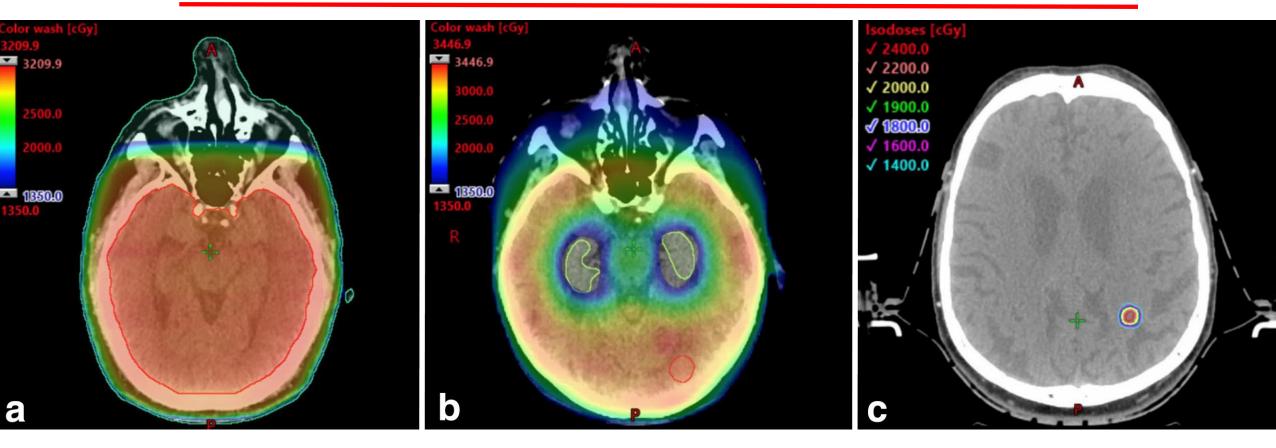
RADIOTHERAPY

Radiotherapy for oligometastatic cancer: a survey among radiation oncologists of Lombardy (AIRO-Lombardy), Italy


Barbara Alicja Jereczek-Fossa^{1,2} · Barbara Bortolato³ · Marianna Alessandra Gerardi¹ · Samantha Dicuonzo¹ · Virginia Maria Arienti³ · Stefania Berlinghieri⁴ · Stefano Bracelli⁵ · Michela Buglione⁶ · Mariangela Caputo⁷ · Gianpiero Catalano⁸ · Luigi Franco Cazzaniga⁹ · Luigi De Cicco⁵ · Nadia Di Muzio¹⁰ · Francesco Romeo Filippone⁹ · Andrei Fodor¹⁰ · Davide Franceschini¹¹ · Paolo Frata⁴ · Stefania Gottardo^{2,15} · Giovanni Battista Ivaldi¹² · Antonio Laudati¹³ · Stefano Maria Magrini⁶ · Elisa Mantero⁷ · Ilaria Meaglia¹² · Sara Morlino⁷ · Mauro Palazzi³ · Fabio Piccoli⁹ · Paola Romanelli¹ · Marta Scorsetti^{11,14} · Flavia Serafini¹³ · Luciano Scandolaro¹³ · Riccardo Valdagni^{2,7,16} · Roberto Orecchia^{2,17} · Paolo Antognoni¹⁵ · the Lombardy Section of the Italian Society of Oncological Radiotherapy (Associazione Italiana di Radioterapia Oncologica-Lombardia, AIRO-L)

Oligometastatic cancer: 7-15% of all RT patients

AGENDA


- ☐ SBRT and SRS
- □ Brain
- □ Thorax
- □ Abdomen/pelvi
- Particular scenarios:

oligometastases, re-irradiation

https://en.wikipedia.org/wiki/Vitruvian_Man #/media/File:Da_Vinci_Vitruve_Luc_Viatou r.jpg

RT for brain metastasis

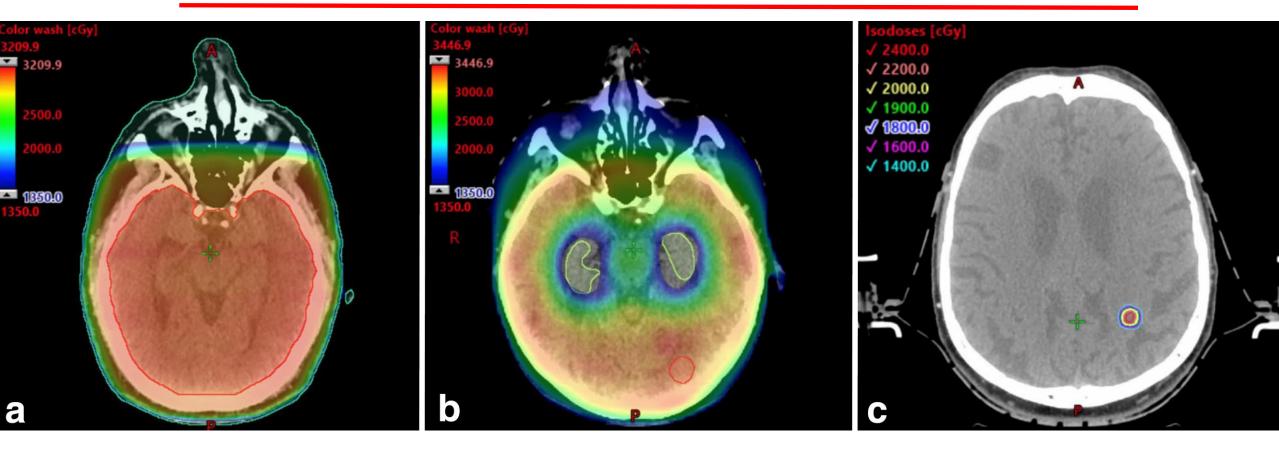
Whole brain RT

Hippocampal avoidance (sparing) WBRT

Stereotactic radiosurgery

WBRT

HS-WBRT (IMRT)


SRS

Any site can be treated, with favorable DVHs

RT for brain metastasis

Whole brain RT

Hippocampal avoidance (sparing) WBRT

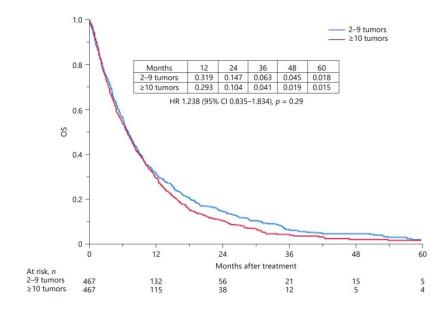
Stereotactic radiosurgery

IEO: 15 patients/2020

40 patients/2020

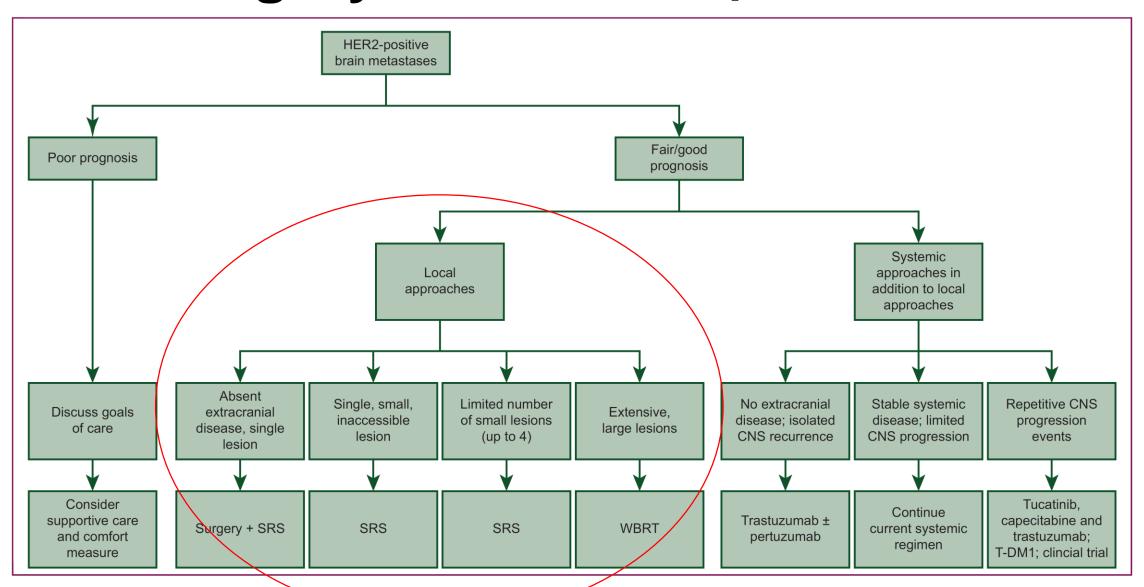
215 patients/2020

SRS in > 10 mts


Tumor Radiosurgery

Niranjan A, Lunsford LD, Kano H (eds): Leksell Radiosurgery. Prog Neurol Surg. Basel, Karger, 2019, vol 34, pp 110–124 (DOI: 10.1159/000493056)

Stereotactic Radiosurgery for Patients with 10 or More Brain Metastases


Masaaki Yamamoto^{a, b} Yoshinori Higuchi^e Yasunori Sato^{c, d} Hidetoshi Aiyama^{a, e} Hidetoshi Kasuya^b Bierta E. Barfod^a

OS did not differ between patients with 2 to 4 metastases and those with 5–10 (median OS 10.8 months in both groups)

^a Katsuta Hospital Mito Gamma House, Hitachinaka, Japan; ^b Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan; ^c Department of Neurosurgery, Chiba University Graduate School of Medicine, Chiba, Japan; ^d Department of Global Clinical Research, Chiba University Graduate School of Medicine, Chiba, Japan; ^e Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan

Boston algorythm for HER2-positive brain mets

Stavrou E et al, ESMO Open 2021, in press

SRT re-irradiation is feasible... (review 13 studies)

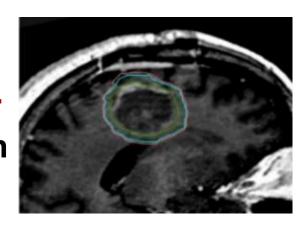
Systematic Review

Efficacy and Safety of a Second Course of Stereotactic Radiation Therapy for Locally Recurrent Brain Metastases: A Systematic Review

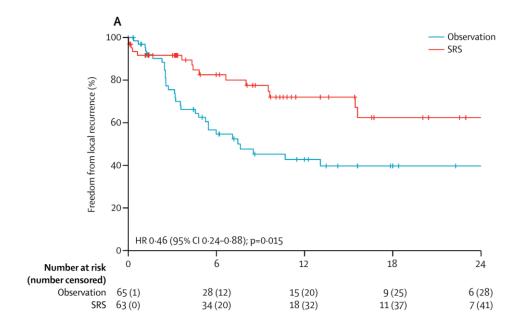
François Lucia ^{1,*}, Ruben Touati ¹, Nicolae Crainic ², Gurvan Dissaux ¹, Olivier Pradier ¹, Vincent Bourbonne ¹ and Ulrike Schick ¹

For patients with a limited number of BM, SRS/SRT achieves favorable tumor control rates of 80–90% at 12 months while sparing normal brain tissue, with a radionecrosis (RN) rate of 3 to 5%

Postoperative RT for brain mets


- 1. No RT
- 2. Whole brain RT
- 3. Stereotactic RT (SRT, SRS)

SRS to surgical cavity (tumor bed)


Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial

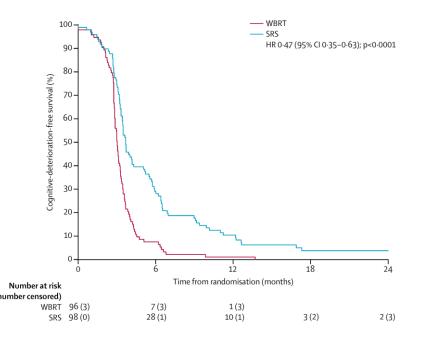
Lancet Oncol 2017; 18: 1040-48

El Shafie et al Cancers 2019, 11(3), 294;

Anita Mahajan, Salmaan Ahmed, Mary Frances McAleer, Jeffrey S Weinberg, Jing Li, Paul D Brown, Stephen Settle, Sujit S Prabhu, Frederick F Lang, Nicholas Levine, Susan McGovern, Erik Sulman, Ian E McCutcheon, Syed Azeem, Daniel Cahill, Claudio Tatsui, Amy B Heimberger, Sherise Ferguson, Amol Ghia, Franco Demonte, Shaan Raza, Nandita Guha-Thakurta, James Yang, Raymond Sawaya, Kenneth R Hess, Ganesh Rao

SRS improved the 1-year freedom from local failure 72% vs. 43% P = 0.015

SRS or WBRT after surgery


Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial

paner etitlo

M

Lancet Oncol 2017; 18: 1049-60

Paul D Brown, Karla V Ballman, Jane H Cerhan, S Keith Anderson, Xiomara W Carrero, Antnony C Wnitton, Jeffrey Greenspoon, Ian F Parney, Nadia N I Laack, Jonathan B Ashman, Jean-Paul Bahary, Costas G Hadjipanayis, James J Urbanic, Fred G Barker II, Elana Farace, Deepak Khuntia, Caterina Giannini, Jan C Buckner, Evanthia Galanis, David Roberge

- Decline in cognitive function more frequent with WBRT than with SRS
- No difference in overall survival
- SRS should be considered one of the standards of care as a less toxic alternative to WBRT

Critical Review

Stereotactic Radiosurgery for Postoperative Metastatic Surgical Cavities: A Critical Review and International Stereotactic Radiosurgery Society (ISRS) Practice Guidelines

Kristin J. Redmond, MD, MPH,* Antonio A.F. De Salles, MD, PhD,† Laura Fariselli, MD,‡ Marc Levivier, MD, PhD,§, Lijun Ma, PhD,¶ Ian Paddick, MSc,# Bruce E. Pollock, MD,** Jean Regis, MD,†† Jason Sheehan, MD, PhD,‡‡ John Suh, MD,§§ Shoji Yomo, MD, III and Arjun Sahgal, MD¶¶

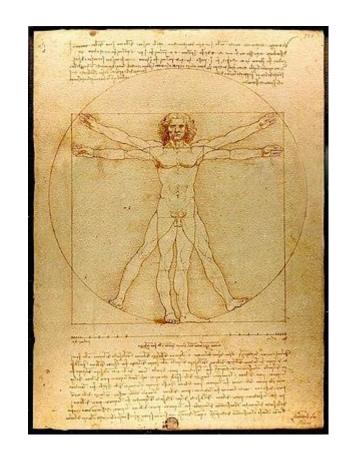

- 8 retrospective series, 1 phase 2 prospective study, 3 randomized controlled trials, and 1 consensus contouring paper
- Local control: 80.5%
- Randomized data suggest improved local control with singlefraction SRS compared with observation and improved cognitive outcomes compared with WBRT
- The toxicity of SRS/SRT in the postoperative setting was limited

	Table 4	ISRS summary recommendations	
	,		Level of
_	Recomme	endation	evidence
	After surg	gery for a brain metastasis,	I
	postope	rative SRS is preferred over	
	observa	tion due to superior local	
	control		
	For patier	nts with 1 resected brain	Ī
	metastas	sis, ECOG performance status	
	of 0-2, a	and a resection cavity	
	measuri	ng <5 cm, postoperative SRS	
	to the re	esection cavity is	
	recomm	nended to minimize cognitive	
	toxicity	compared with whole brain	
	radiation	n therapy	
		lume should include the	III
		n cavity and entire surgical	
		th consideration to expand the	
		target volume to include a 5-	
		expansion beyond the	
	7	ative tumor location along	
		p in those tumors contacting	
		preoperatively, while	
		ng anatomic barriers, and a 1-	
		xpansion along sinuses for	
		contacting a sinus	
		atively. In addition, a 2-3 mm	
		xpansion to PTV should be	
	consider		***
		on doses of approximately 30-	III
		EQD2 ₁₀ , 50-70 EQD2 ₅ , and	
		QD2 ₂ , have been associated	
		sonable local control, but	
		comparative studies are	
		ed. Emerging data suggest	
	and the second second	raction treatment without dose	
		lation is appropriate in <2 cm in size and that	
		ated regimens may provide	
		clocal control compared with	
		raction SRS in patients with	
	10 mars	etastases greater than 2.5-	
	3 cm.	ctastases greater than 2.5-	
		ent process for brain	III
		ses surgery should include a	111
		on of the risk of surgical	
		nation of tumor manifesting as	
		eningeal disease.	
	Leptonic		

Int J Radiation Oncol Biol Phys, Vol. 111, No. 1, pp. 68-80, 2021

AGENDA

- □ SBRT and SRS
- □ Brain
- □ Thorax
- □ Abdomen/pelvi
- Particular scenarios:
 - oligometastases, re-irradiation

https://en.wikipedia.org/wiki/Vitruvian_Man #/media/File:Da_Vinci_Vitruve_Luc_Viatou r.jpg

STAGE I NSCLC: SBRT vs RT TROG 09.02 CHISEL

Ball D. et al. Lancet Oncol 2019; 20: 494-503

Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): a phase 3, open-label, randomized controlled trial

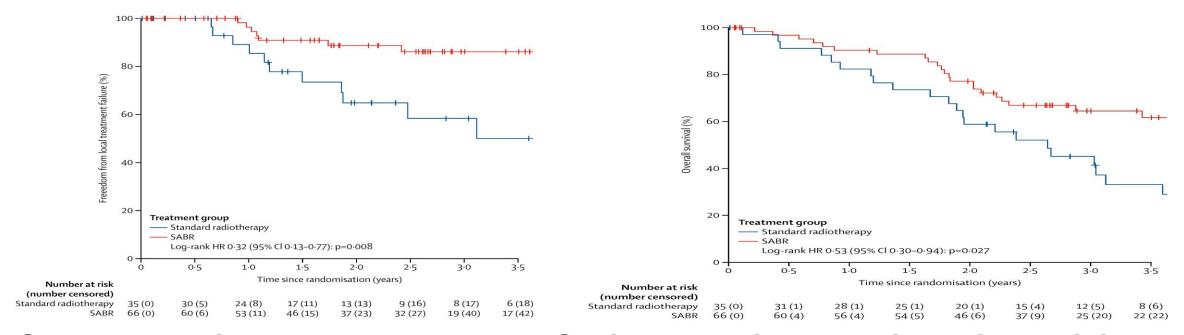
101 patients : biopsy-confirmed stage 1 (T1–T2aN0M0) NSCLC

FDG-PET staged

medically inoperable or had refused surgery

ECOG 0-1

peripherally located tumor



SABR 54 Gy/3 fr of 18 Gy 48 Gy/4 fr of 12 Gy standard RT 66 Gy/33 fr of 2 Gy 50 Gy/20 fr of 2.5 Gy

STAGE I NSCLC: SBRT vs RT TROG 09.02 CHISEL

Ball D. et al. Lancet Oncol 2019; 20: 494-503

Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): a phase 3, open-label, randomized controlled trial

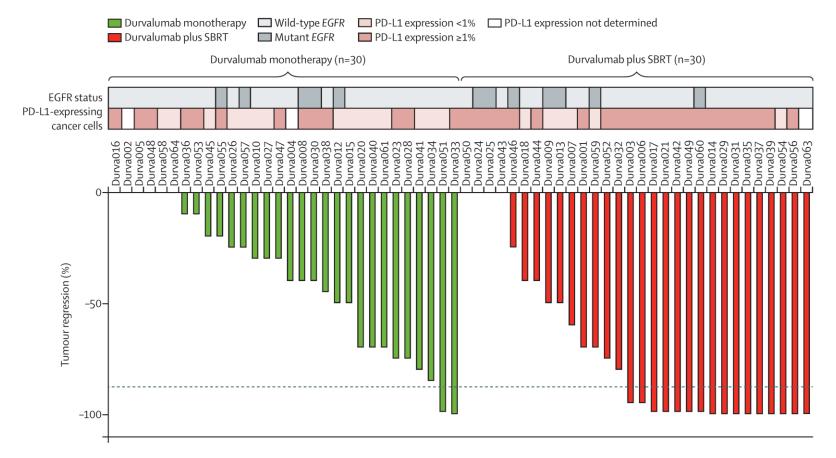
SABR: superior local control and OS without an increase in major toxicity

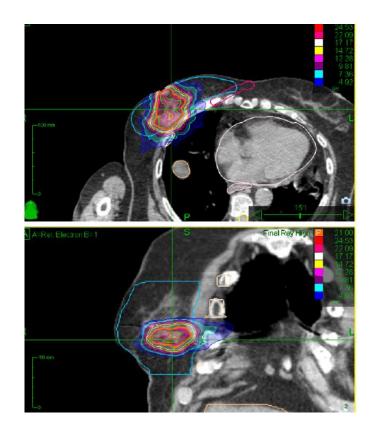
SABR should be the treatment of choice for this patient group

SBRT as alternative to surgery

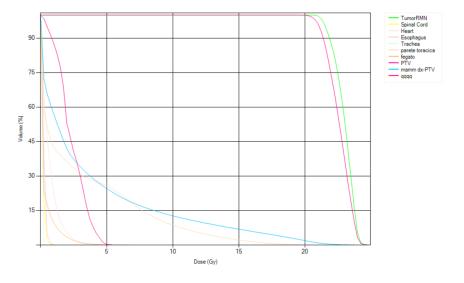
SABRTooth: a randomised controlled feasibility study of stereotactic ablative radiotherapy (SABR) with surgery in patients with peripheral stage I nonsmall cell lung cancer considered to be at higher risk of complications from surgical resection

Kevin N. Franks^{1,2,13}, Lucy McParland^{3,13}, Joanne Webster³, David R. Baldwin⁴, David Sebag-Montefiore^{1,2,3}, Matthew Evison⁵, Richard Booton⁵, Corinne Faivre-Finn ⁶, Babu Naidu ⁶, Jonathan Ferguson⁸, Clive Peedell⁸, Matthew E.J. Callister⁹, Martyn Kennedy⁹, Jenny Hewison¹⁰, Janine Bestall¹⁰, Walter M. Gregory³, Peter Hall¹¹, Fiona Collinson³, Catherine Olivier³, Rachel Naylor³, Sue Bell³, Peter Allen¹², Andrew Sloss¹² and Michael Snee¹

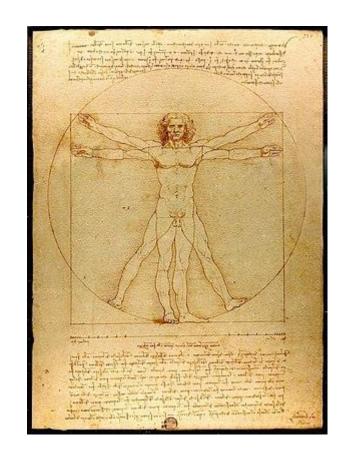

- A phase III RCT randomising higher risk patients between SABR and surgery is not feasible in the National Health Service.
- Patients have pre-existing treatment preferences, which was a barrier to recruitment.
- A significant proportion of patients randomised to the surgical group declined and chose SABR.


Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trial

Nasser K Altorki, Timothy E McGraw, Alain C Borczuk, Ashish Saxena, Jeffrey L Port, Brendon M Stiles, Benjamin E Lee, Nicholas J Sanfilippo, Ronald J Scheff, Bradley B Pua, James F Gruden, Paul J Christos, Cathy Spinelli, Joyce Gakuria, Manik Uppal, Bhavneet Binder, Olivier Elemento, Karla V Ballman, Silvia C Formenti



Breast cancer SBRT



AGENDA

- □ SBRT and SRS
- □ Brain
- □ Thorax
- □ Abdomen/pelvi
- □ Particular scenarios:

oligometastases, re-irradiation

https://en.wikipedia.org/wiki/Vitruvian_Man #/media/File:Da_Vinci_Vitruve_Luc_Viatou r.jpg

PROSTATE EXTREME HYPOFRACTIONATION

2000	2009	2013	2014	2016	2019	2021
1st patient 5 fractions	Ph II trial results	Report > 1000 pts	NCCN/ASTRO guidelines	HYPO-RT trial AIRO guidel	Report > 6000 pts PACE B trial	SHARP High risk

Courtesy of Thomas Zilli, ESTRO 2021

Where are we?

Comprehensive Cancer Cancer Prostate Cancer

NCCN Guidelines Index
Table of Contents
Discussion

PRINCIPLES OF RADIATION THERAPY

Table 1: Below are examples of regimens that have shown acceptable efficacy and toxicity. The optimal regimen for an individual patient warrants evaluation of comorbid conditions, voiding symptoms and toxicity of therapy. Additional fractionation schemes may be used as long as sound oncologic principles and appropriate estimate of BED are considered.

See PROS.3, PROS.4, PROS.5, PROS.6, PROS.7, PROS.9, PROS.13, and PROS.6 for other recommendations, including recommendations for neoadjuvant/concomitant/adjuvant ADT.

			(√ indicates	NCCN Risk Group licates an appropriate regimen option if radiation therapy is given)				
Regimen	Preferred Dose/Fractionation	Very Low and Low	Favorable Intermediate	Unfavorable Intermediate	High and Very High	Regional N1	Low Volume M1 ^a	
EBRT		•						
Moderate Hypofractionation (Preferred)	3 Gy x 20 fx 2.7 Gy x 26 fx 2.5 Gy x 28 fx	✓	✓	√	✓	√		
	2.75 Gy x 20 fx						√	
Conventional Fractionation	1.8–2 Gy x 37–45 fx	√	√	√	✓	√		
Ultra-Hypofractionation	7.25–8 Gy x 5 fx 6.1 Gy x 7 fx	✓	~	✓	✓			
	6 Gy x 6 fx						✓	
Brachytherapy Monotherap				4				
LDR lodine 125 Palladium 103 Cesium 131	145 Gy 125 Gy 115 Gy	~	✓	_	•			
HDR Iridium-192	13.5 Gy x 2 implants 9.5 Gy BID x 2 implants	✓	✓					
, ,,,	combined with 45-50.4 Gy x 25	-28 fx or 37.	5 Gy x 15 fx)					
LDR lodine 125 Palladium 103 Cesium 131	110–115 Gy 90–100 Gy 85 Gy			~	✓			
HDR Iridium-192	15 Gy x 1 fx 10.75 Gy x 2 fx			✓	✓			

^a High-volume disease is differentiated from low-volume disease by visceral metastases and/or 4 or more bone metastases, with at least one metastasis beyond the pelvis vertebral column. Patients with low-volume disease have less certain benefit from early treatment with docetaxel combined with ADT.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN, ASTRO and AIRO guidelines have included ultrahypofractionation (SBRT) as an option for Pca

in centers with technology&clinical expertise

EUROPEAN UROLOGY 79 (2021) 243-262

available at www.sciencedirect.com journal homepage: www.europeanurology.com

Review - Prostate Cancer

EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer—2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent

Nicolas Mottet ^{a,*}, Roderick C.N. van den Bergh ^b, Erik Briers ^c, Thomas Van den Broeck ^d,

Caution in high risk...

High risk Pca? Pelvis?

Focal boosting of the DIL

Shorter schedules

Less than 5 fractions: 3? 2? 1?

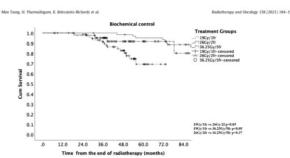
Original Article

Two versus five stereotactic ablative radiotherapy treatments for localized prostate cancer: A quality of life analysis of two prospective clinical trials

Yasir Alayed ^{a,b,c}, Harvey Quon ^d, Patrick Cheung ^{a,b}, William Chu ^{a,b}, Hans T. Chung ^{a,b}, Danny Vesprini ^{a,b}, Aldrich Ong ^e, Amit Chowdhury ^e, Dilip Panjwani ^f, Joelle Helou ^g, Geordi Pang ^{a,b}, Renee Korol ^{a,b}, Melanie Davidson ^{a,b}, Ananth Ravi ^{a,b}, Boyd McCurdy ^e, Liying Zhang ^a, Alexandre Mamedov ^a, Andrea Deabreu ^a, Angela Commisso ^a, Kristina Commisso ^b, Andrew Loblaw ^{a,b,*}

*Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto; *Department of Radiation Oncology, University of Toronto, Canada; *Division of Radiation Oncology, College of Medicine, King Saud University, Riyadh, Saudi Arabia; *Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary; *CancerCare Manitoba, Winnipeg, Canada; *Compassionate Cancer Centres, India: *Department of Radiation Oncology, University of Toronto, Princes Margaret Cancer Centre; and *Duiversity Health Network, Toronto, Canada

International Journal of Radiation Oncology biology • physics


Clinical Investigation

40Gy/3 fr

Toxicity at 1 Year After Stereotactic Body Radiation Therapy in 3 Fractions for Localized Prostate Cancer

Alessandro Magli, MD,* Alessia Farneti, MD,† Adriana Faiella, MD,† Mariaconsiglia Ferriero, MD,† Valeria Landoni, PhD,§ Diana Giannarelli, PhD,¶ Eugenia Moretti, PhD,¶ Ugo de Paula, MD,# Sara Gomellini, MD,# and Giuseppe Sanquineti, MD,†

JAMA Oncology | Original Investigation

Safety and Efficacy of Virtual Prostatectomy With Single-Dose Radiotherapy in Patients With Intermediate-Risk Prostate Cancer Results From the PROSINT Phase 2 Randomized Clinical Trial

24Gy/1fr

19Gy/1fr

19Gy/1fr

26Gy/2fr

36.25Gy/5fr

Radiotherapy and Oncology 159 (2021) 67-74

Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

Original Article

Single dose high-dose-rate brachytherapy with focal dose escalation for prostate cancer: Mature results of a phase 2 clinical trial

Shreya Armstrong ^{a,b,*}, Stephanie Brown ^a, May Stancliffe ^{c,d}, Peter Ostler ^a, Robert Hughes ^a, Peter Hoskin ^a, Roberto Alonzi ^a

Radiotherapy and Oncology 158 (2021) 184-190

Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

Original Article

Ultra-hypofractionated radiotherapy for low- and intermediate risk prostate cancer: High-dose-rate brachytherapy vs stereotactic ablative radiotherapy

Yat Man Tsang ^{a,*}, Hannah Tharmalingam ^a, Katherine Belessiotis-Richards ^a, Shreya Armstrong ^a, Peter Ostler ^a, Robert Hughes ^a, Roberto Alonzi ^a, Peter J Hoskin ^{a,b}

Radiotherapy and Oncology 139 (2019) 83-86

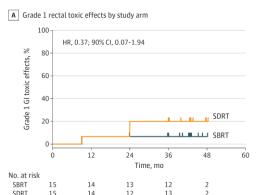
Contents lists available at ScienceDirect

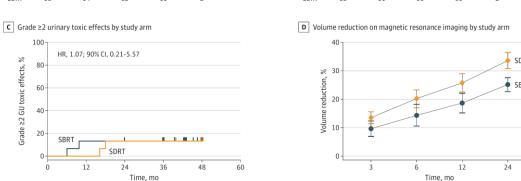
Radiotherapy and Oncology

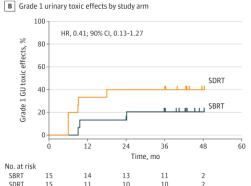
journal homepage: www.thegreenjournal.com

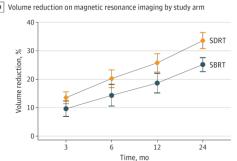
Short Communication

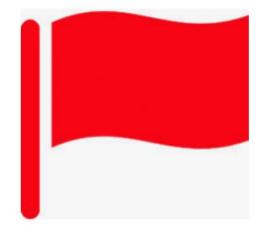
Single fraction urethra-sparing prostate cancer SBRT: Phase I results of the ONE SHOT trial




Thomas Zilli ^{a,b,*}, Ciro Franzese ^d, Marta Bottero ^a, Niccolò Giaj-Levra ^g, Robert Förster ^f, Daniel Zwahlen ^e, Nikolaos Koutsouvelis ^a, Aurelie Bertaut ^h, Julie Blanc ^h, Giuseppe Roberto D'agostino ^d, Filippo Alongi ^{g,j}, Matthias Guckenberger ^f, Marta Scorsetti ^{c,d}, Raymond Miralbell ^{a,b}


JAMA Oncology | Original Investigation


Safety and Efficacy of Virtual Prostatectomy With Single-Dose Radiotherapy in Patients With Intermediate-Risk Prostate Cancer Results From the PROSINT Phase 2 Randomized Clinical Trial


Joep Stroom, MD; Oriol Pares, MD; Nuno Pimentel, MD; Vasco Louro, MD; Inês Santiago, MD; Sandra Vieira, PhD;
Joep Stroom, PhD; Dalila Mateus; Ana Soares; João Marques; Elda Freitas; Graça Coelho; Manuela Seixas;
Antonio Lopez-Beltran, MD; Zvi Fuks, MD

Single dose prostate radiotherapy — a step too far?

Alison C. Tree and Nicholas J. van As

LOCAL SALVAGE APPROACH

- 1. Surgery
- 2. HIFU
- 3. Cryotherapy
- 4. BRT

Review - Prostate Cancer EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer ES O SERVICE SET OF S Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) **Prostate Cancer** Version 2.2021 — February 17, 2021 Contents lists available at ScienceDirect Radiotherapy and Oncology Radiotherapy for recurrent prostate cancer: 2018 Recommendations of the Australian and New Zealand Radiation Oncology Genito-Urinary

Hester Lieng A.*, Amy J. Hayden b, David R.H. Christie C.d., Brian J. Davis C. Thomas N. Eade A.C.L.

Louise Emmett B, Tanya Holt J, George Hruby C.L., David Pryor J, Thomas P. Shakespeare L.

Louise Emmett B, Tanya Holt J, George Hruby C.L., David Pryor J, Thomas P. Shakespeare L.

Cornford P et al. **EAU-ESTRO-SIOG Guidelines on Prostate Cancer** Eur Urol. 2021;79:263-282. Parker C, et al. Prostate cancer: **ESMO Clinical Practice Guidelines**. Ann Oncol 2020;31:1119-34 **NCCN** Clinical practice guidelines in Oncology 2021 Lieng H et al. Radioth Oncol 2018;129:377–386

Finally 2021

Meta-analyses

MASTER, Valle LF et al. Eur Urol. 2021 Sep;80(3):280-292 Corkum MT et al., Adv Radiat Oncol . 2020;5:965-977 Ingrosso G et al., Eur Urol Oncol 2020;3:183-197

Systematic Reviews and Reviews

Munoz F et al., Cancer Treat Rev 2021;95:102176 Baty M et al. Cancer/Radiotherapie 2019;23:541-558 Philippou Y et al. Eur Urol Focus 2016;2:158-171 Tetreault-Laflamme A et al. Semin Radiat Oncol 2016

ESTRO ACROP Consensus Jereczek-Fossa BA et al. Cancer Treat Rev 2021;98:102206

Luca F. Valle a., Eric J. Lehrer b., Daniela Markovic David Elashoff Rebecca Levin-Epstein

R. Jeffery Karnes ^d, Robert E. Reiter ^e, Matthew Rettig^{f,g}, Jeremie Calais ^h, Nicholas G. Nickols ^a

Robert T. Dess¹, Daniel E. Spratt¹, Michael L. Steinberg ^a, Paul L. Nguyen ^b, Brian J. Davis ¹, Nicholas G. Zaorsky ^a, Amar U. Kishan ^{a,e,e}

A Novel Salvage Option for Local Failure in Prostate Cancer, Reirradiation Using External Beam or Stereotactic Radiation Therapy: Systematic Review and Meta-Analysis Mark T. Corkum, MD, MSc. Lucas C. Mendez, MD, MSc. A

Advances in Radiation Oncology (2020) 5, 965-97.

Scientific Article

Joseph Chin, MD, David D'Souza, MD, R. Gabriel Boldt, MLIS, and Glenn S. Bauman, MDa,*

after prostate cancer radiotherapy: An ESTRO ACROP Delphi consensus

Simone Giovanni Gugliandolo 6. C. C. Dario Zerini 6. Federica Corso 6. Sara Gandini 6 Filippo Alongi **, Alberto Bossi , Philip Cornford , Berardino De Bari *, Valérie Fonteyne *, Peter Hoskin **, Bradley R. Pieters *, Alison C. Tree **, Stefano Arcangeli *, Donald B. Fuller * Ciro Franzese ",", Jean-Michel Hannoun-Levi ", Guillaume Janorav ",", Linda Kerkmeijer Young Kwok ", Lorenzo Livi ", Mauro Loi ", Raymond Miralbell ", David Pasquier ", Michael Pinkawa ", Nathaliel Scher ", Marta Scorsetti ", Mohamed Shelan ", Alain Toledano ", Nicholas van Asia", Andrea Vavassori ", Thomas Zilli dan Matteo Pepa ". Piet Ost and, on the behalf of the European Society for Radiotherapy, Oncology Advisory Committee on Radiation Oncology Practice (ESTRO ACROP)

The best option?

Invasive RP

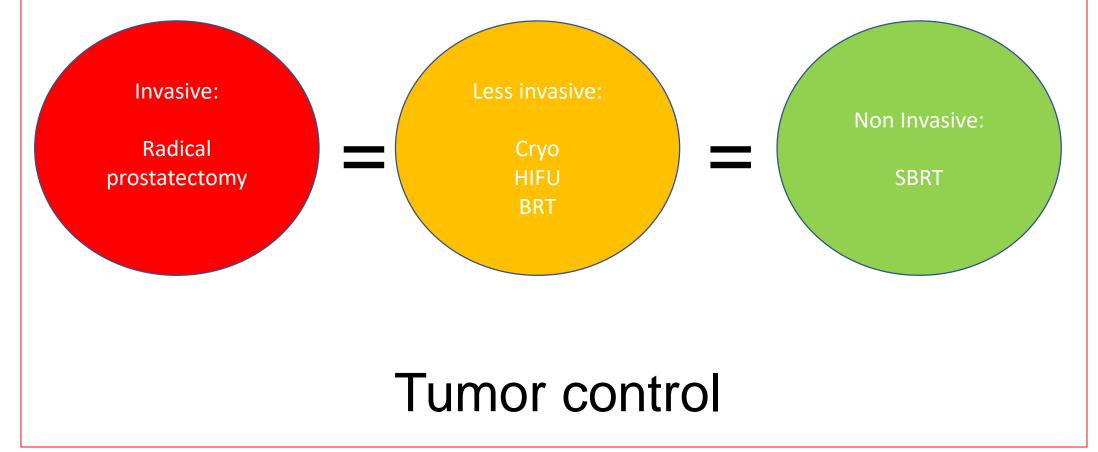
Less invasive HIFU, cryo, BRT

Non invasive SBRT

Salvage therapy	5y biochemical control	GU tox (G3-4)	GI tox (G3- G4)	
Prostatectomy	37-65%	15-65%	5-10%	
HIFU	45-54%	10-40%	0.5-6%	
Cryotherapy	50% (23-70%)	3-19%	2%-14%	
Brachytherapy	50% (34-77%)	10-20%	2%-6%	
SBRT	35-50%	0-5%	0-2%	

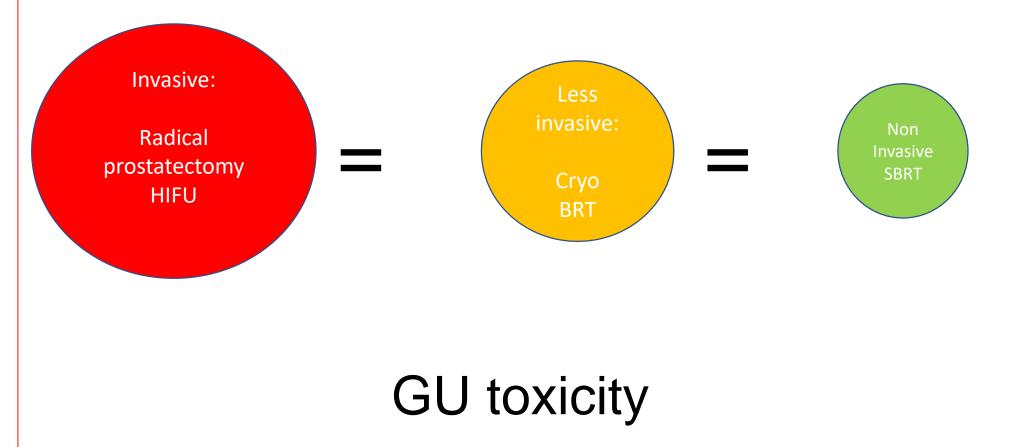
A Systematic Review and Meta-analysis of Local Salvage Therapies After Radiotherapy for Prostate Cancer (MASTER)

Luca F. Valle^{a,†}, Eric J. Lehrer^{b,†}, Daniela Markovic^c, David Elashoff^c, Rebecca Levin-Epstein^a, R. Jeffery Karnes^d, Robert E. Reiter^e, Matthew Rettig^{f,g}, Jeremie Calais^h, Nicholas G. Nickols^{a,i}, Robert T. Dess^j, Daniel E. Spratt^j, Michael L. Steinberg^a, Paul L. Nguyen^k, Brian J. Davis^l, Nicholas G. Zaorsky^m, Amar U. Kishan^{a,e,*}

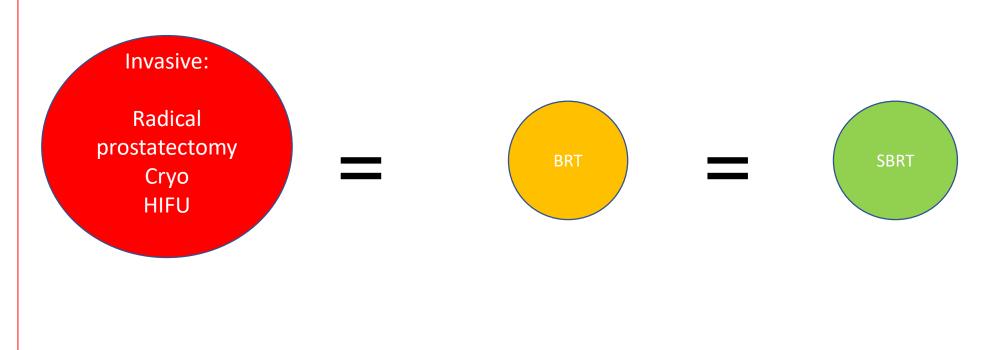

Table 1 – Summary of patient and treatment characteristics for local salvage modalities

	Age (yr)	Whole-gland salvage (%)	Biopsy-proven recurrence (%)	Presalvage PSA (ng/mL)	Perisalvage ADT use (%)	Interval from initial treatment to recurrence or salvage (mo)	Median follow-up (mo)	Number of studies (n)	Number of patients (n)
RP	65	100	99	6.0	16	50	47	52	2686
Cryotherapy	66	93	99	5.8	35	63	32	32	5153
HIFU	69	86	100	5.0	18	63	33	20	1783
SBRT	72	61	81	4.0	37	89	26	8	261
HDR	71	85	94	4.5	43	61	40	16	586
LDR	69	92	95	5.5	37	67	52	32	853

ADT = androgen deprivation therapy; HDR = high-dose-rate brachytherapy; HIFU = high-intensity focused ultrasound; LDR = low-dose-rate brachytherapy; PSA = prostate-specific antigen; RP = radical prostatectomy; SBRT = stereotactic body radiotherapy.

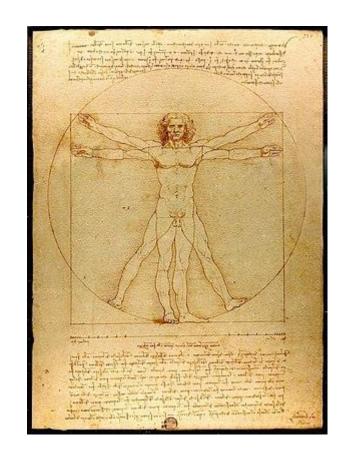


150 studies were included for analysis.



150 studies were included for analysis.

150 studies were included for analysis.



GI Toxicity

AGENDA

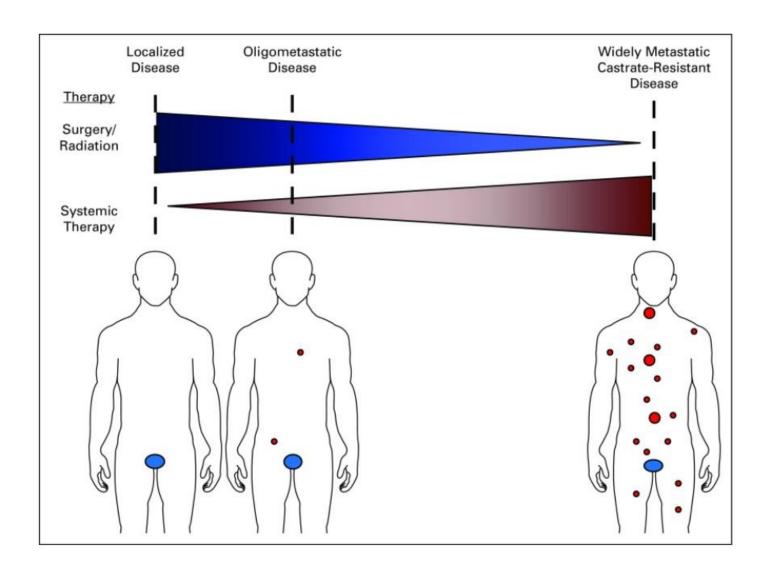
- ☐ SBRT and SRS
- □ Brain
- □ Thorax
- □ Abdomen/pelvi
- □ Particular scenarios:

oligometastases, re-irradiation

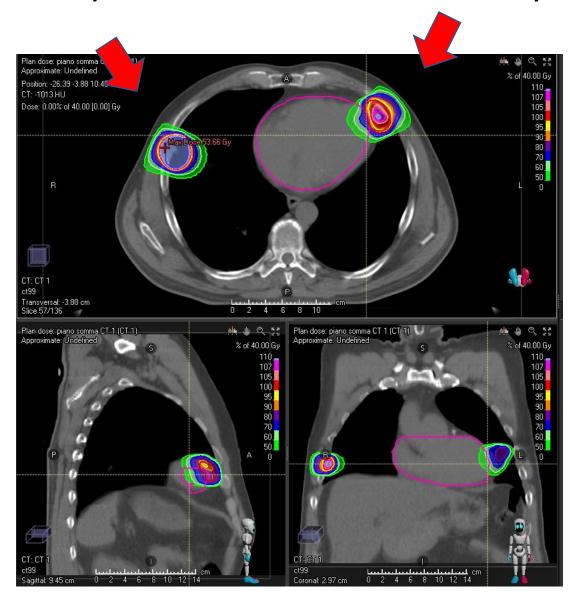
https://en.wikipedia.org/wiki/Vitruvian_Man #/media/File:Da_Vinci_Vitruve_Luc_Viatou r.jpg

DEFINITION

1. Nr of mets



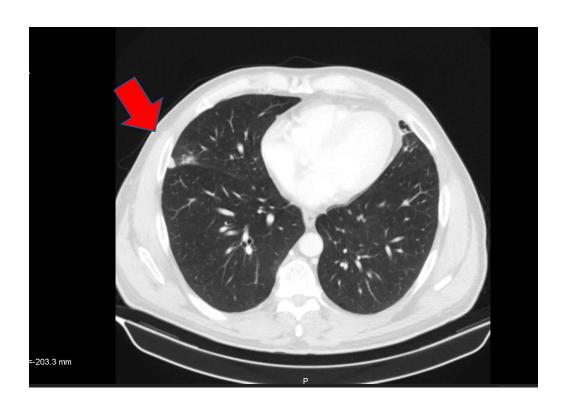
DEFINITION

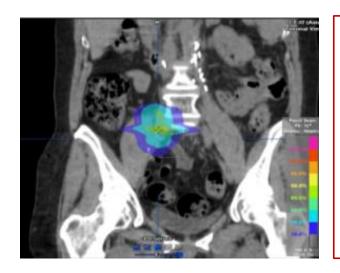

- 1. Nr of mets
- 2. Volume of mets
- 3. Nr of organs
- Type of organs (lymph nodes, bone, visceral organs)
- 5. Primary tumor
- 6. Time to occurrence

Altering the natural history of oligometastatic cancer

SBRT: 50 Gy in 5 fractions

SBRT: 40 Gy in 5 fractions



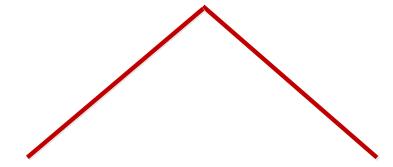

Radioterapia ablativa Stereotassica

Da 2.5 anni senza terapia attiva (drug holiday)

TC di controllo

Local Consolidative Therapy Vs. Maintenance Therapy or Observation for Patients With Oligometastatic Non-Small-Cell Lung Cancer: Long-Term Results of a Multi-Institutional, Phase II, Randomized Study

Gomez D et al published at jco.org on May 8, 2019: DOI https://doi.org/10.1200/JCO.19.00201

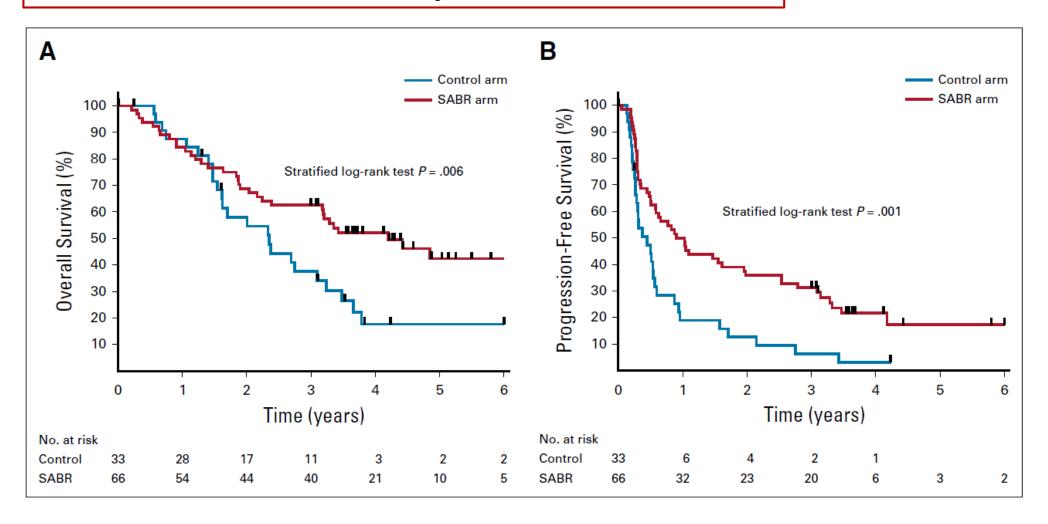

- Early trial closure after 49 patients (a significant PFS benefit in the LCT arm)
- With an updated median follow-up time of 38.8 months:

	LCT	MT/O		
PFS	14.2m	4.4m	P=0.022	inling PFS upg OS
OS	41.2m	17m	P=0.017	tripling PFS os nearly tripling OS
				119

No additional grade 3 or greater toxicities were observed.

SABR-COMET study

Oligometastatic breast, colon, prostate, lung cancer



Standard of care

Standard of care

+ SBRT

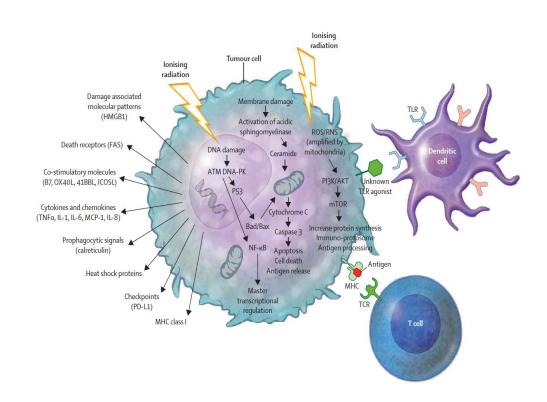
Benefit in OS: 22 m
Absolute benefit at 5 years: 24.6%

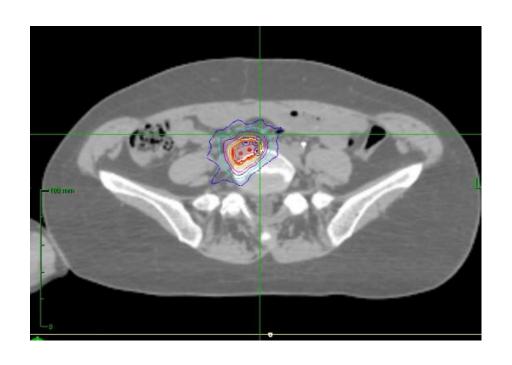
Palma DA et al. J Clin Oncol 38:2830-2838.

STUDY PROTOCOL

Open Access

Stereotactic ablative radiotherapy for the comprehensive treatment of 4–10 oligometastatic tumors (SABR-COMET-10): study protocol for a randomized phase III trial




David A. Palma^{1*}, Robert Olson², Stephen Harrow³, Rohann J. M. Correa¹, Famke Schneiders⁴, Cornelis J. A. Haasbeek⁴, George B. Rodrigues¹, Michael Lock¹, Brian P. Yaremko¹, Glenn S. Bauman¹, Belal Ahmad¹, Devin Schellenberg², Mitchell Liu², Stewart Gaede¹, Joanna Laba¹, Liam Mulroy⁵, Sashendra Senthi⁶, Alexander V. Louie⁷, Anand Swaminath⁸, Anthony Chalmers⁹, Andrew Warner¹, Ben J. Slotman⁴, Tanja D. de Gruijl⁴, Alison Allan¹ and Suresh Senan⁴

New histologies: TCC

- 1. Patel V, et al. (2017) Survival after metastasectomy for metastatic urothelial carcinoma: a systematic review and meta-analysis Bl Cancer 3(2) 121–132
- 2. Shah S, et al (2017) Consolidative radiotherapy in metastatic urothelial cancer Clin Genitourin Cancer 15(6) 685–688
- 3. Manig L, et al (2016) Predicting survival after irradiation of metastases from transitional carcinoma of the bladder Anticancer Res 36(12) 6663–6665
- 4. Augugliaro M, et al (2019) Recurrent oligometastatic transitional cell bladder carcinoma: is there room for radiotherapy? Neoplasma 66(1) 160–165
- 5. Leonetti A, et al (2018) Radiotherapy for the treatment of distant nodes metastases from oligometastatic urothelial cancer: a retrospective case series Int J Urol 25(10) 879–886 https://doi.org/10.1111/iju.13773 PMID: 30103254
- 6. Francese C et al. Stereotactic Body Radiation Therapy in the Management of Oligometastatic and Oligoprogressive Bladder Cancer and Other Urothelial Malignancies Clin Oncol (R Coll Radiol). 2021 Jan;33(1):50-56.

Sundahl N, et al.: Randomized phase 1 trial of pembrolizumab with sequential versus concomitant stereotactic body radiotherapy in metastatic urothelial carcinoma Eur Urol 2019, 75(5) 707–711

Sharabi A, et al. Lancet Oncol 2015;16:e498-509. Finkelstein et al. Clin Dev Immunol 2011;439752

available at www.sciencedirect.com
journal homepage: www.eu-openscience.europeanurology.com

Review - Prostate Cancer

Oligorecurrent Prostate Cancer and Stereotactic Body Radiotherapy: Where Are We Now? A Systematic Review and Meta-analysis of Prospective Studies

Giulia Marvaso ^{a,b,†}, Stefania Volpe ^{a,b,†,‡}, Matteo Pepa ^{a,*}, Matteo Augugliaro ^a, Giulia Corrao ^{a,b}, Annalisa Biffi ^{c,d}, Mattia Zaffaroni ^a, Luca Bergamaschi ^{a,b}, Francesco Maria La Fauci ^{a,e}, Francesco Alessandro Mistretta ^f, Stefano Luzzago ^{b,f}, Federica Cattani ^e, Gennaro Musi ^{b,f}, Giuseppe Petralia ^{b,g}, Gabriella Pravettoni ^{b,h}, Ottavio De Cobelli ^{b,f}, Roberto Orecchia ⁱ, Barbara Alicja Jereczek-Fossa ^{a,b}

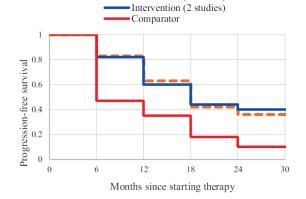


Fig. 2 – Kaplan-Meier survival curve for survivors to oligometastatic prostate cancer: intervention (four studies: observational studies and RCT; n=323), intervention (two studies: RCT; n=67), and comparison (two studies: RCT; n=49). The dotted orange line represents all patients in the intervention arm (four studies). The blue line includes individuals in the intervention arm (two studies: RCT). The red line includes patients in the observation arm (two studies: RCT). RCT=randomized controlled trial.

445 pts

6 prospective studies:

2 randomised

4 observational

Almost 100% local control

PFS benefit is mantined at 2 y

Almost no toxicity

Hormone-sensitive oligometastatic prostate cancer

Clinical trial design

Phase II RCT

Intervention arm: 31 Observation arm: 31 Oligometastatic recurrence, 1–3 metastases (PET/CT), M1a-c SABR, or all-site metastasectomy

STOMP

Phase II RCT (2:1)

Intervention arm: 36
Observation arm: 18
Oligometastatic recurrence, 1–3
metastases (conventional imaging),
M1a-b SABR

ORIOLE

Phase I

Single arm: 33 (22 a)
Oligometastatic recurrence, 1–3
metastases (PET/CT), M1a-b
SABR

POPSTAR

Phase I

Single arm: 20 Synchronous, 1–10 metastases (conventional imaging), M1a-b CRP + PLND ± RPLND ± SABR

MSKCC *

Clinical trial outcomes

LC: 100% 3 yr

ADT-FS

Intervention arm: 21 mo Observation arm: 13 mo (HR 0.60; 95% CI [0.40– 0.90]; p = 0.11 b) LC: 98.9% 6 mo

PFS

Intervention arm: not reached Observation arm: 31 mo (HR 0.30; 95% CI [0.11–0.81; p = 0.02)

LC: 97% 1 yr

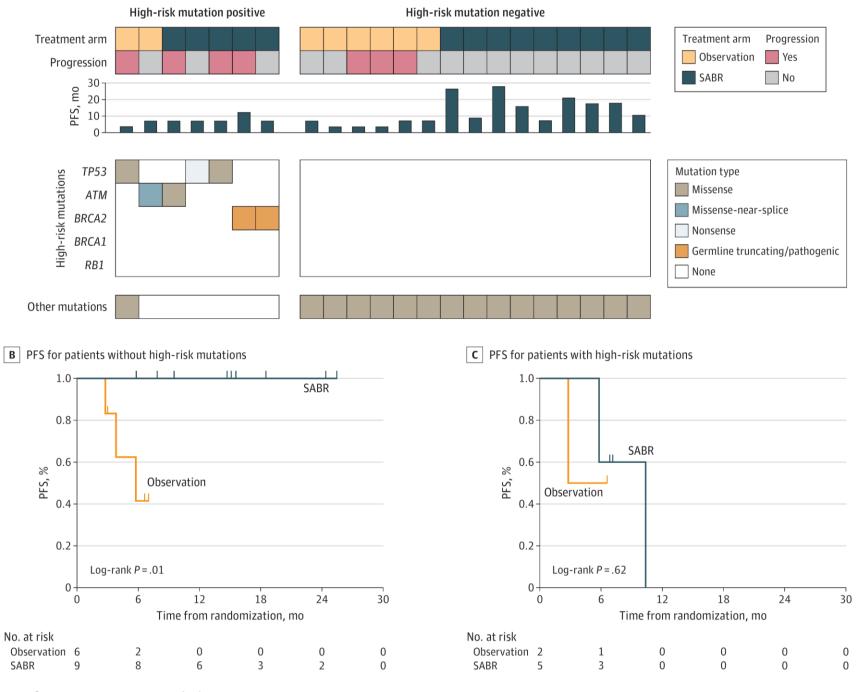
ADT-FS

2 yr ^a: 48% (95% CI 31–75)

PFS

(PSA \leq 0.05 ng/ml) 12 mo: 60% (10% °) 20 mo: 50% (20% °)

ORIOLE: phase II randomized trial



Association of tumor biology and outcome of SBRT

any oligorecurrent patient with a high-risk mutation

(mutations of key gatekeepers of genomic integrity like BRCA 1/2, ATM, TP53, or RB1)

would soon progress when managed with MDT alone

Philips R et al. JAMA Oncol. 2020;6(5):650-659.

SBRT to oligometastatic CRPC

Retrospective studies

- 1. Triggiani L et al. World J Urol. 2019 Mar 11. doi: 10.1007/s00345-019-02717-7
- 2. Berghen C et al. Eur Urol Oncol 2019 Sep 23. pii: S2588-9311
- 3. Valeriani M et al. Radiation Oncology (2019) 14:205
- 4. Deek MP et al. Eur Urol Oncol. 2020 Jun 11:S2588-9311(20)30058-4

SBRT to oligoprogressive-mCRPca: next-line systemic treatment free survival (NEST)

30 pts with CRPC

SBRT/surgery + 1-3 progressive mets (maintaining systemic therapy)

MAIN FINDINGS:

- median NEST-free survival: 16 months
- progression-free survival: 10 months
- only minor radiotherapy- or surgery-related toxicity

Combo trials (mCRPC and SBRT)

ClinicalTRialsgov. Name/Centre/PI	Study design	Arms
NCT03449719 ARTO/Univ of Florence, Italy	Phase II Randomized Trial: Trial Comparing Efficacy and Safety of Abiraterone and Abiraterone Associated With of Ablative Radiation Therapy in Patients With Oligometastatic CRPC	ABI +/- SBRT
NCT03503344 PILLAR/Univ of California, San Francisco, USA	Phase II Randomized Trial: Apalutamide With or Without Stereotactic Body Radiation Therapy in Treating Participants With CRPC	Apalutamide +/- SBRT
NCT01818986 University of Texas Southwestern Medical Center USA	Phase II, Single arm Trial: Sipuleucel-T and Stereotactic Ablative Body Radiation (SABR) for Metastatic CRPC	Sipuleucel + SBRT
NCT02685397 Jewish General Hospital, Canada	Adaptive Phase II/III Randomized Trial: The Role of Stereotactic Body Radiotherapy in the Management of CRPC Cancer With Oligometastases:	Enzalutamide +/- SBRT
NCT04070209 Jewish General Hospital, Canada	of Stereotactic Body Radiotherapy on Darolutamide in the Management of Oligoprogressive CRPC	Darolutamide + SBRT

PSMA-PET guided RT trials

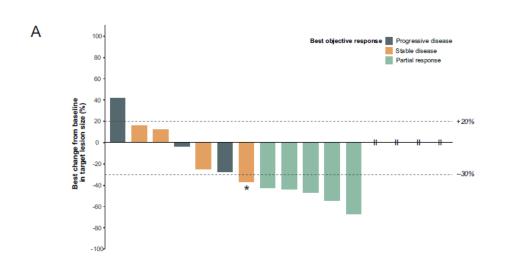
Oligometastatic	disease				
NCT03569241	2	MDT + ADT vs MDT + whole- pelvis RT + ADT (6 mo total)	Nodal relapse after RP or RT, identified on choline, PSMA, or FACBC PET/CT with \leq 3 nodes avid	178	2-yr metastasis free survival
NCT03298087	2	RP + leuprolide + apalutamide + abiraterone + SBRT (6 mo ADT total)	De novo M1a or M1b with \leq 5 metastases that would be classified as M1a or M1b	28	Percentage of patients with PSA < 0.05 ng/mL at 6 mo after testosterone recovery
NCT03902951	2	Leuprolide + apalutamide + abiraterone + SBRT (6 mo ADT total)	Recurrence after RP with ≤5 metastases that would be classified as M1a or M1b	28	Percentage of patients with PSA < 0.05 ng/mL at 6 mo after testosterone recovery
NCT03503344	2	Apalutamide + SBRT vs apalutamide alone	Castrate-resistant disease (3 PSA > 0.05 ng/mL on continuous antiandrogen therapy) with ≤ 5 lesions on PSMA PET/CT	60	Proportion of patients with PSA < 0.2 ng/mL at 18 mo
NCT04222634	2	MDT	≤3 extracranial oligoprogressive lesions; ¹⁸ F-PSMA PET/CT used as part of the investigational study, not to define the number of lesions	18	Next-line systemic treatment-free survival and PSMA PET/CT accuracy and predictive value
NCT03525288	2	RT to 1–5 lesions found on ¹⁸ F- DCFPyL-PSMA PET/CT vs standard RT	\leq 5 lesions on conventional imaging (including N1 lesions by echelon by 1 lesions and with \leq 3 non-bone lesions) or selected NCCN high risk or biochemical recurrence (after RP [PSA \geq 0.2 ng/mL] or RT [PSA \geq nadir +2 ng/mL])	130	Failure-free survival

Kishan A et al. Eur Urol Focus. 2020 Oct 10:S2405-4569(20)30283-2.

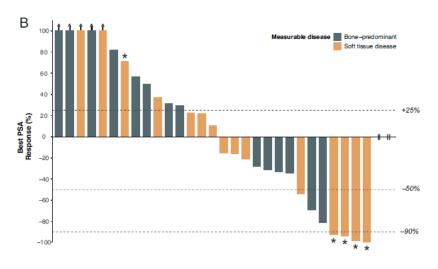
ARTICLE IN PRESS

EUROPEAN UROLOGY XXX (2021) XXX-XXX

available at www.sciencedirect.com journal homepage: www.europeanurology.com



European Association of Urology


Platinum Priority – Prostate Cancer Editorial by XXX on pp. x–y of this issue

Avelumab Combined with Stereotactic Ablative Body Radiotherapy in Metastatic Castration-resistant Prostate Cancer: The Phase 2 ICE-PAC Clinical Trial

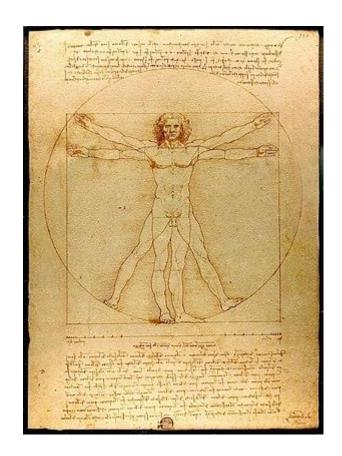
Edmond M. Kwan ^{a,b}, Lavinia Spain ^{c,d,e}, Angelyn Anton ^{d,e,f}, Chun L. Gan ^b, Linda Garrett ^b, Deborah Chang ^b, Elizabeth Liow ^b, Caitlin Bennett ^e, Tiantian Zheng ^g, Jianjun Yu ^g, Chao Dai ^g, Pan Du ^g, Shidong Jia ^g, Heidi Fettke ^{h,i}, Claire Abou-Seif ^j, Gargi Kothari ^k, Mark Shaw ^{i,k}, Phillip Parente ^{d,e}, Carmel Pezaro ^{d,e}, Ben Tran ^{c,f,i}, Shankar Siva ^{i,k}, Arun A. Azad ^{a,c,i,*}

- Advanced and heavily pretreated prostate cancer (CRPC)
- SBRT + avelumab was safe
- in nearly half of patients: cancer control for 6 months or longer
- SBRT may improve the effectiveness of immunotherapy in prostate cancer.

GOOD NEWS FOR OUR PATIENTS

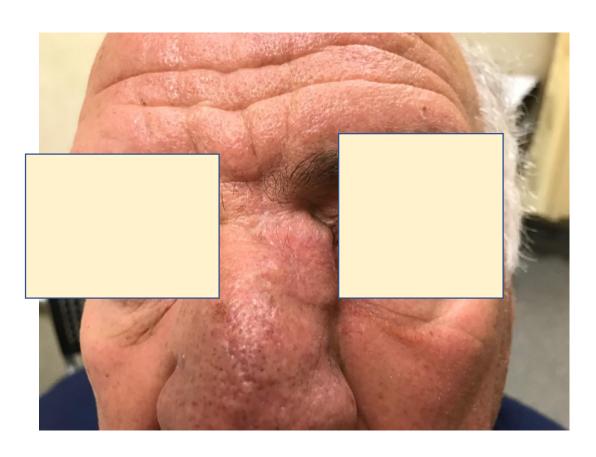
- 1. Local control 90-100%
- 2. Almost no toxicity
- 3. Median 2-3 years of DRUG HOLIDAY

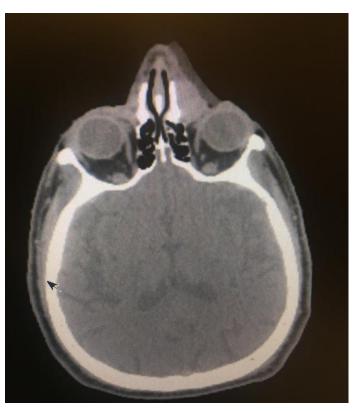
Chronic curable patients Meta-static -> meta-stable disease

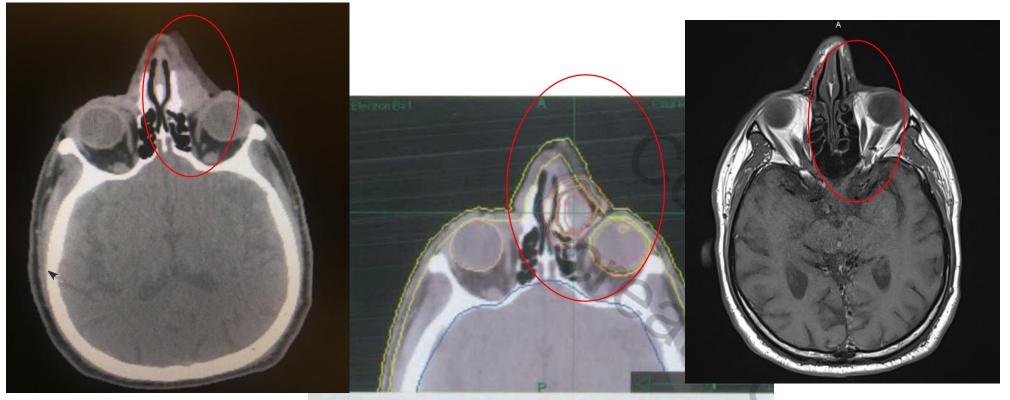


AGENDA

- ☐ SBRT and SRS
- □ Brain
- □ Thorax
- □ Abdomen/pelvi
- □ Particular scenarios:

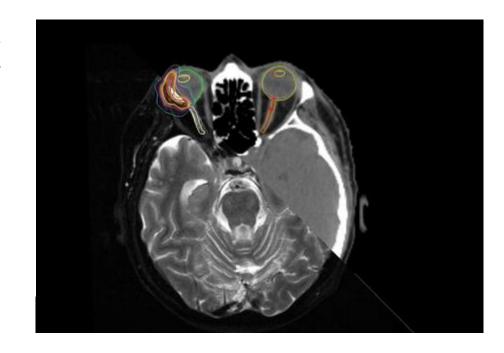

oligometastases, re-irradiation,


difficult sites

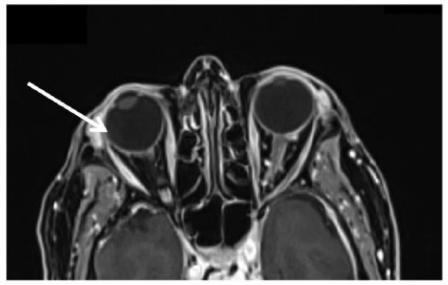


https://en.wikipedia.org/wiki/Vitruvian_Man #/media/File:Da_Vinci_Vitruve_Luc_Viatou r.jpg

RT in Squamous Cell Carcinoma

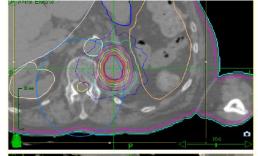


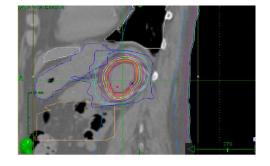
CyberKnife radiotherapy for orbital metastases: A single-center experience on 24 lesions

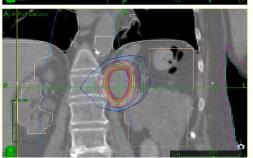

European Journal of Ophthalmology 2019, Vol. 29(1) 61–68 © The Author(s) 2018 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1120672118761728 journals.sagepub.com/home/ejo

\$SAGE

Giulia Riva^{1,2}, Matteo Augugliaro^{1,2}, Gaia Piperno², Annamaria Ferrari², Elena Rondi³, Sabrina Vigorito³, Delia Ciardo², Roberto Orecchia⁴ and Barbara Alicja Jereczek-Fossa^{1,2}

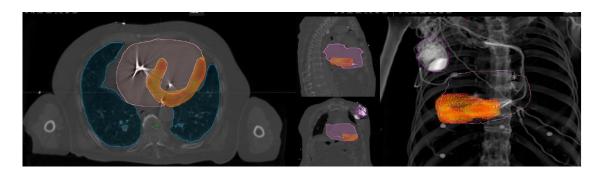


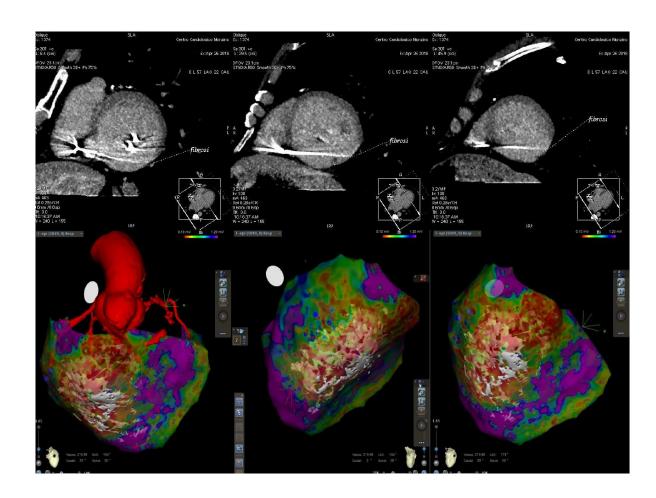




VIRTUAL SURGERY:

Small primary or recurrent tumors in inoperable patients

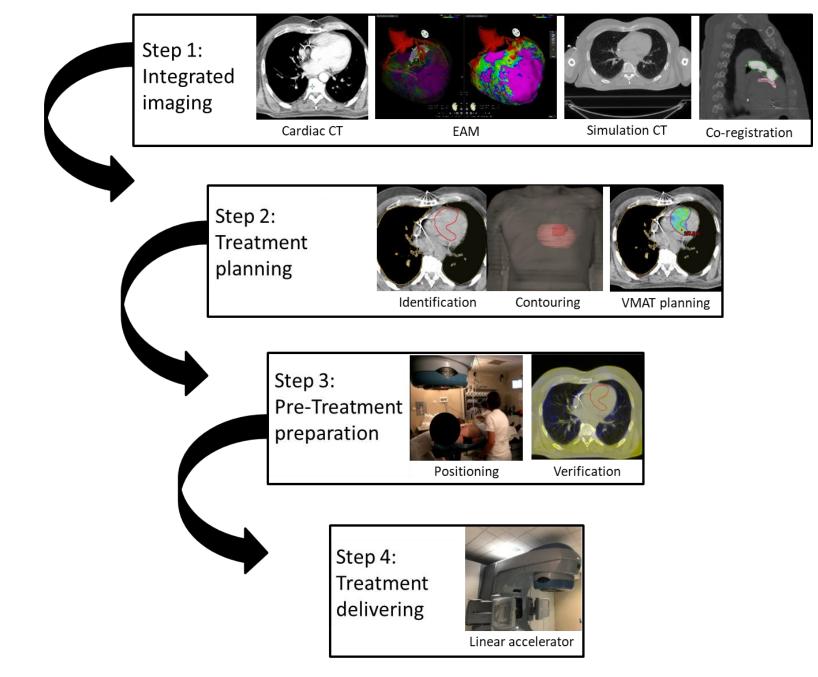

Heart radioablation


> J Interv Card Electrophysiol. 2020 Aug 27. doi: 10.1007/s10840-020-00855-2. Online ahead of print.

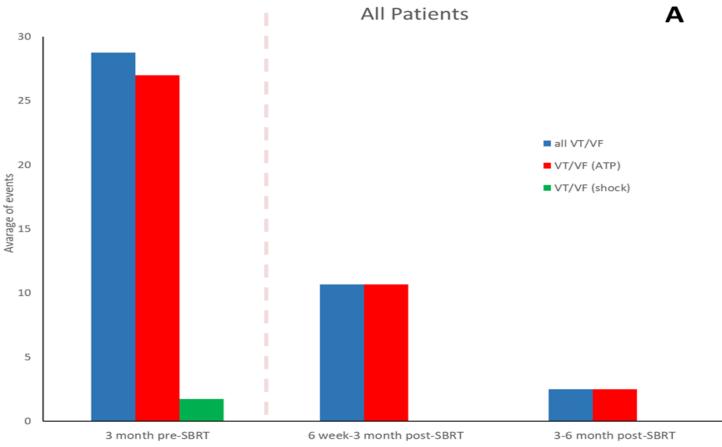
STRA-MI-VT (STereotactic RadioAblation by Multimodal Imaging for Ventricular Tachycardia): rationale and design of an Italian experimental prospective study

C Carbucicchio ¹, B A Jereczek-Fossa ² ³, D Andreini ⁴ ⁵, V Catto ⁶, G Piperno ³, E Conte ⁴, F Cattani ⁷, E Rondi ⁷, S Vigorito ⁷, C Piccolo ⁷ ⁸, A Bonomi ⁹, A Gorini ² ¹⁰, M Pepa ³, S Mushtaq ⁴, G Fassini ⁶, M Moltrasio ⁶, F Tundo ⁶, G Marvaso ² ³, F Veglia ⁹, R Orecchia ¹¹, E Tremoli ¹², C Tondo ⁶ ⁵

phase lb/II, open-label study Clinical trials gov NCT04066517



WORKFLOW


Journal of Interventional Cardiac Electrophysiology (2021) 62:427–439 https://doi.org/10.1007/s10840-021-01060-5

Stereotactic radioablation for the treatment of ventricular tachycardia: preliminary data and insights from the STRA-MI-VT phase Ib/II study

Corrado Carbucicchio ¹ • Daniele Andreini^{2,3} • Gaia Piperno⁴ • Valentina Catto ¹ • Edoardo Conte² • Federica Cattani⁵ • Alice Bonomi⁶ • Elena Rondi⁵ • Consiglia Piccolo⁵ • Sabrina Vigorito⁵ • Annamaria Ferrari⁴ • Matteo Pepa⁴ • Mattia Giuliani⁷ • Saima Mushtaq² • Antonio Scarà⁸ • Leonardo Calò⁸ • Alessandra Gorini^{7,9} • Fabrizio Veglia⁶ • Gianluca Pontone² • Mauro Pepi¹⁰ • Elena Tremoli¹¹ • Roberto Orecchia¹² • Giulio Pompilio ^{13,14} • Claudio Tondo^{1,14} • Barbara Alicja Jereczek-Fossa^{4,9}

PRELIMINARY RESULTS: radioablation for VT (IEO-CCM)

Carbucicchio C, Jereczek-Fossa BA in press

HOW T O DO IT SAFELY?

Table 13.1 Systems for documentation of side-effects, with examples for oral mucositis

Grade	General	RTOG/EORTC	CTCAE v3	WHO
0	No change	No change	No change	No change
1	Mild	Erythema, mild soreness, painless erosions	Erythema; normal diet	Soreness, erythema
2	Moderate/clear	Painful erythema, oedema or ulcers; can eat	Patchy ulceration; can eat and swallow modified diet	Erythema, ulcers; can eat solids
3	Severe/significant	Painful erythema, oedema or ulcers; cannot eat	Confluent ulcerations, bleeding with minor trauma; unable to adequately aliment or hydrate orally	Ulcers; requires liquid diet only
4	Life-threatening	Requires parenteral or enteral support	Tissue necrosis; significant spontaneous bleeding	Alimentation not possible
5	Death owing to side-effects	Death owing to side-effects	Death owing to side-effects	Death owing to side-effects

RTOG/EORTC, Radiation Therapy and Oncology Group and the European Organisation for Research and Treatment of Cancer; CTCAE v3, the Common Terminology Criteria for Adverse Events, version 3; WHO, World Health Organization.

Joiner M, Van der Kogel A, Basic Clinical Radiobiology 4° ed.

CTCAE: Higher rate of G1 and G2 urinary toxicity Yoshida K et a.: Anticancer Res 2014;34:2015-2018.

Do it safely....

Practical Radiation Oncology® (2021) 11, e355-e365

Topic Discussion

Organ at Risk Dose Constraints in SABR: A Systematic Review of Active Clinical Trials

Serenna G. Gerhard, BHSc (candidate), David A. Palma, MD, PhD, A.*
Andrew J. Arifin, MD, Alexander V. Louie, MD, PhD, George J. Li, HBSc, Faiez Al-Shafa, MD, Patrick Cheung, MD, George B. Rodrigues, MD, PhD, Carol W. Bassim, DMD, MSc, MHSc, and Mark T. Corkum, MD, MSc

Constraints review from 85 trials using:

Timermann et al UK SABR Hanna et al AAPM Hy-TEC etc

Topic Discussion

Organ at Risk Dose Constraints in SABR: A Systematic Review of Active Clinical Trials

Serenna G. Gerhard, BHSc (candidate), ^a David A. Palma, MD, PhD, ^a,*
Andrew J. Arifin, MD, ^a Alexander V. Louie, MD, PhD, ^b George J. Li, HBSc, ^c
Faiez Al-Shafa, MD, ^d Patrick Cheung, MD, ^b George B. Rodrigues, MD, PhD, ^a
Carol W. Bassim, DMD, MSc, MHSc, ^e and Mark T. Corkum, MD, MSc^b

53 of 85 eligible clinical trials contributed OAR constraints Constraints 1-8 fractions 33 OARs

RESULTS:

- substantial variability in OAR dose constraints (dose, volumes, optional vs mandatory)
- OARs displaying the most variability were the rectum, penile bulb, and chest wall and ribs

Do it safely....

Constraints review from 85 trials...

Practical Radiation Oncology® (2021) 11, e355-e365

Topic Discussion

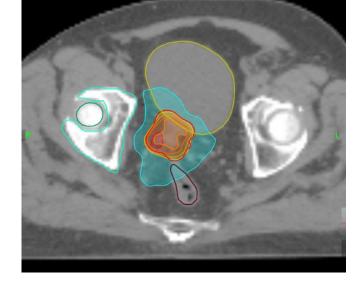
Organ at Risk Dose Constraints in SABR: A Systematic Review of Active Clinical Trials

Serenna G. Gerhard, BHSc (candidate), David A. Palma, MD, PhD, A.*
Andrew J. Arifin, MD, Alexander V. Louie, MD, PhD, George J. Li, HBSc, Faiez Al-Shafa, MD, Patrick Cheung, MD, George B. Rodrigues, MD, PhD, Carol W. Bassim, DMD, MSc, MHSc, and Mark T. Corkum, MD, MSc

Table 1 Dose constraints from selected OARs for SABR delivered in 1 fraction								
Parameter	No. studies reporting	Modal dose constraint (Gy)	Median dose constraint (Gy)	Interquartile range (Gy)	Minimum dose constraint (Gy)	Maximum dose constraint (Gy)		
Spinal cord								
$D_{\text{max}} (\leq 0.1 \text{ cm}^3)$	18	14	14	14-14	14	15		
$D0.35 \text{ cm}^3$	13	10	10	10-10	10	10		

Table 2	Dose constraints from select	ed OARs for SABR	delivered in 3 frac	tions		
Parameter	No. studies reporting	Modal dose constraint (Gy)	Median dose constraint (Gy)		Minimum dose constraint (Gy)	

Table 3	Dose constraints from selecte	d OARs for SAI	BR delivere	d in 5	fractions	\		
Parameter	No. studies reporting	Modal dose constraint (Gy)	Mediar constra		/	erquartile nge (Gy)	Minimum dose constraint (Gy)	Maximum dose constraint (Gy)


Table 5 Comparison of modal 5 fraction dose constraints included in our study with AAPM-TG 101, Timmerman, NRG-BR001, and the UK Consensus Guidelines

		Mode of included	AAPM-TG 101	Timmerman	NRG-BR001	UK Consensus			
		studies							
		Volume	Volume	Volume	Volume	Volume			
Organ	Parameter	dose (Gy)	dose (Gy)	dose (Gy)	dose (Gy)	dose (Gy)			
Colon	D _{max} (<0.1 cm ⁻)	58	58	38	40				
	$D0.5 \text{ cm}^3$	32							
	$D20 \text{ cm}^3$	25	25	25	28.5				
Rectum	$D_{\text{max}} (< 0.1 \text{ cm}^3)$	38	38	38	55				
	$D0.5 \text{ cm}^3$	30, 32				-1			
	$D3.5 \text{ cm}^3$	50			50				
	$D20 \text{ cm}^3$	25	25	25	32.5				
Bladder wall	$D_{\text{max}} (< 0.1 \text{ cm}^3)$	38	50	38	38				
	$D0.5 \text{ cm}^3$	WARNING							
	$D15 \text{ cm}^3$	WARMING	 						
Ureter	$D_{\text{max}} (< 0.1 \text{ cm}^3)$	1. No clinical data matched with constraints							
	$D0.5 \text{ cm}^3$								
Penile bulb	D_{max} (<0.1 cm ³)	2. Patterns of practice study							
	$D0.5 \text{ cm}^3$	3. Readers	3. Readers should exercise prudence when						
	$D3 \text{ cm}^3$		-						
Femoral heads	$D10 \text{ cm}^3$	reviewing and referencing such constraints.							

Gerhard S et al. Pract Radiat Oncol 2021;11:e355-e365.

TAKE HOME MESSAGES

- SBRT/SRS is widely employed in oncology
- Higher level evidence is becoming available
- High quality planning and delivery are essential
- Scrupulous data collection is warranted in order to establish safety constraints for routine use (standardisation)

Thank you!

