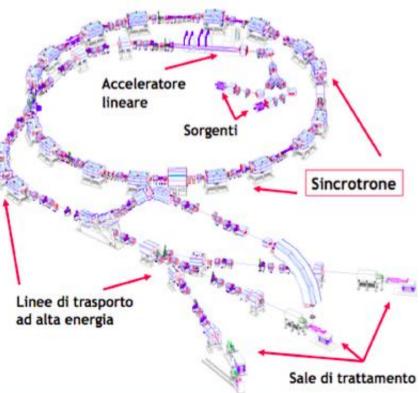
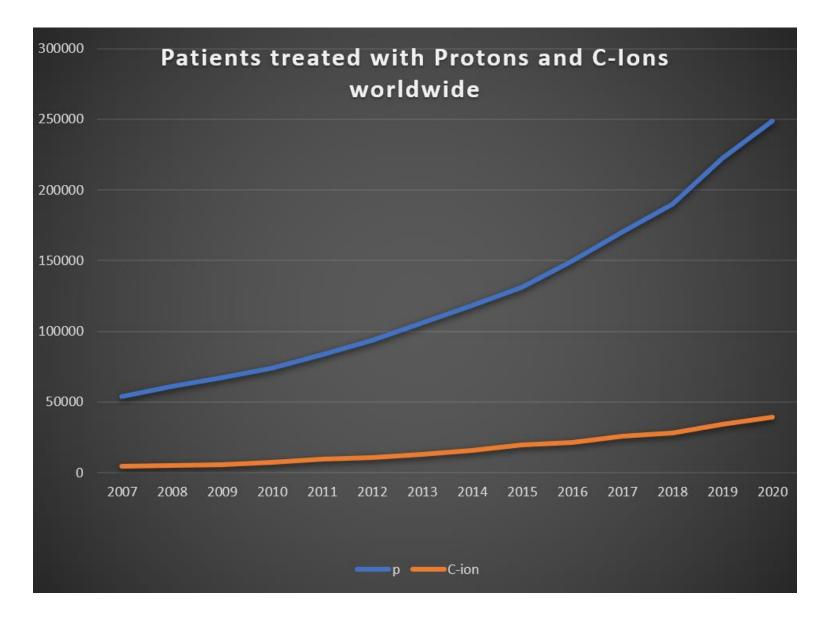
Sistema Socio Sanitario

Sabato 27 Novembre 2021

RADIOTERAPIA OGGI E DOMANI, 20 (+1) anni della U.O.C. di Radioterapia dell'Ospedale Manzoni di Lecco

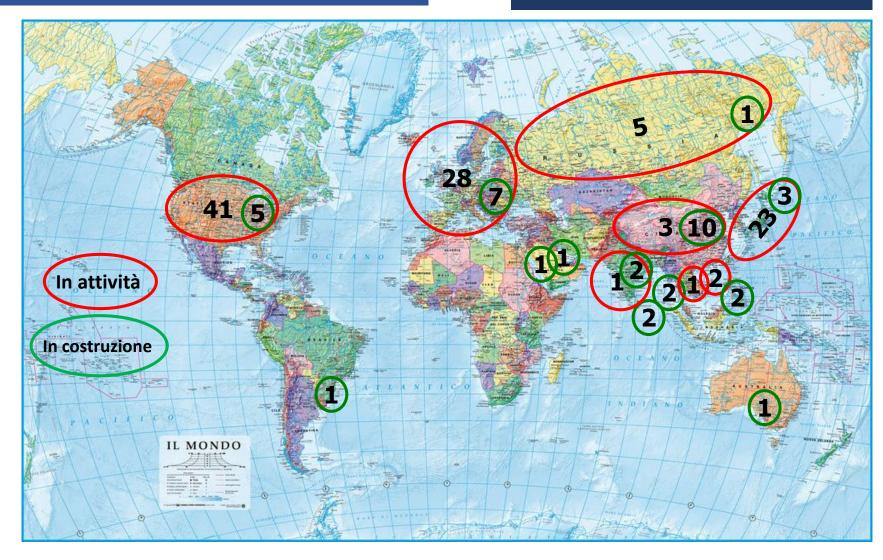
Politecnico di Milano – Polo Territoriale di Lecco – Aula Magna Via G. Previati 1/c—Lecco




Il Centro Nazionale di Adroterapia-CNAO

E. Orlandi

CNAO in Pavia dual center Protons/Carbon lons



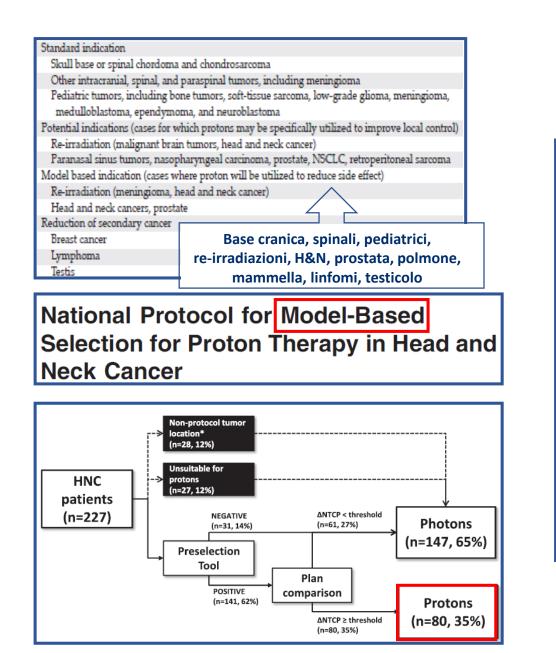
PTCOG Website, Ottobre 2021

Centri di Adroterapia nel mondo

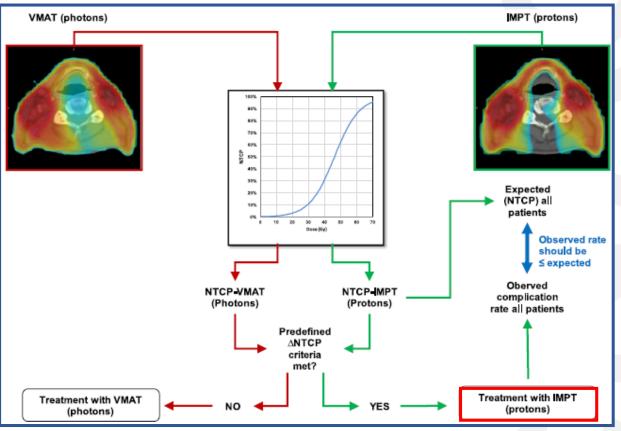
104* Centri in attività 38** in costruzione (5 con CIRT) 28 in planning

PTCOG Website, Ottobre 2021

Centri con Ioni Carbonio



PTCOG website, Ottobre 2021

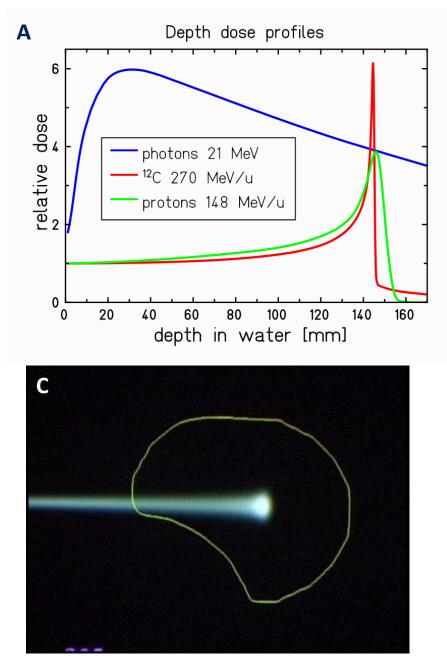

(Roma

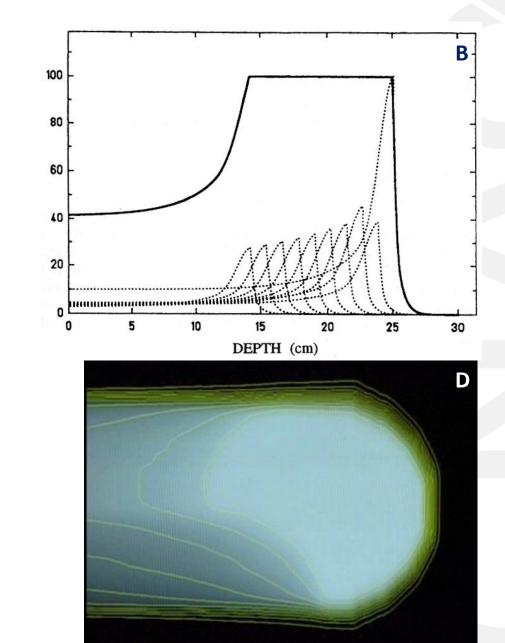
Barcelona

ladrid

Il modello olandese

Lagendijk JA et Al. Sem Radiat Oncol 2018; Tambas M et AL. Radiother Oncol 2020; Lagendijk JA et Al. Int J Particle Ther 2021


In Italia


Patologie attualmente trattabili al CNAO nell'ambito del Sistema Sanitario Nazionale, inserite nei LEA (marzo 2017):

- Tumori orbitali e periorbitali, incluso il melanoma oculare
- Tumori del tronco encefalico e del midollo spinale
- Meningiomi intracranici in sedi critiche
- Carcinomi adenoideo-cistici delle ghiandole salivari
- Cordomi e condrosarcomi della base del cranio e rachide
- Tumori solidi pediatrici
- Tumori in pazienti affetti da sindromi genetiche
- Sarcomi delle parti molli
- Sarcomi ossei
- Ritrattamenti di tumori in sedi già irradiate

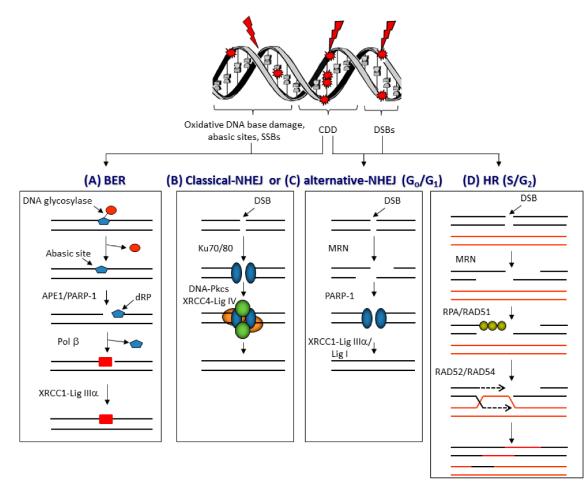
…confronto dosimetrico /TCP/NTCP……

Physical proprieties

Changed Particles: Phisics & Radiobiology

X-Ray/Protons

High-energy Low dose Low-LET Fractionation sparing RBE ~1 OER ~3


Carbon Ions

Low-energy High dose High-LET Little fractionation effect RBE > 1 OER < 3

- PT RBE : 1.1-7
- CIRT RBE :2.3-4

Protons: Radiobiology

• Different lesions are induced along the radiation track

Most frequent:

- DNA base damage
- sites of base loss (abasic sites)
- DNA single-strand breaks (SSBs)

Less frequent (but the most lethal) at the distal edge of the SOBP

- double-strand breaks (DSBs)
- complex DNA damage (CDD) containing two or more DNA lesions in close proximity (within 1–2 helical turns of the DNA)

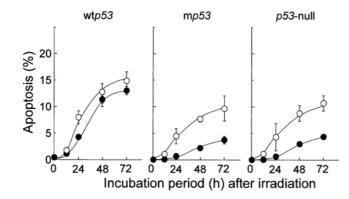
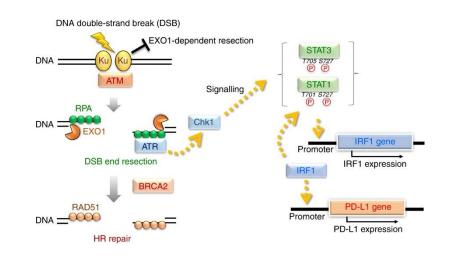
Down-regulation by PT of genes involved in motility which are upregulated by X-Ray

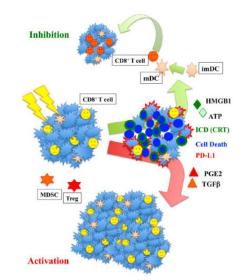
- ↓angiogenesis
- ↓ metastasis

Eccles et al. Mutat. Res. 2011 Lomax et al Clin. Oncol. R. Coll. Radiol. 2013 Vitti et al Cancers 2018

Carbon Ions: Radiobiology

- Difference in terms of molecular radiobiology
 - ✓ down-regulation by C-ions of genes involved in motility which are upregulated by X-Ray
 - ↓ angiogenesis
 - ↓ metastasis
- High LET is efficient to induce cell death of resistant cells (i.e. cancer stem-like or p53 mutant cells)

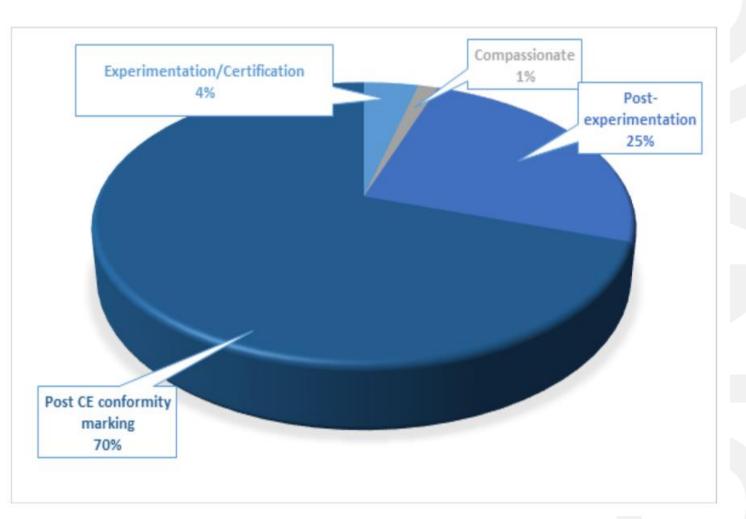




Fig. 3. Time-dependency of radiation-induced apoptosis. Apoptosis induced by X-rays (•) and 70 KeV/ μ m carbon beams (\bigcirc) at isosurvival dose (D_{30}) was analyzed by Hoechst 33342 staining in H1299/wtp53 (clone No. 1), H1299/mp53 (clone No. 3), and H1299 (clone No. 5) cells. Error bars indicate standard deviations.

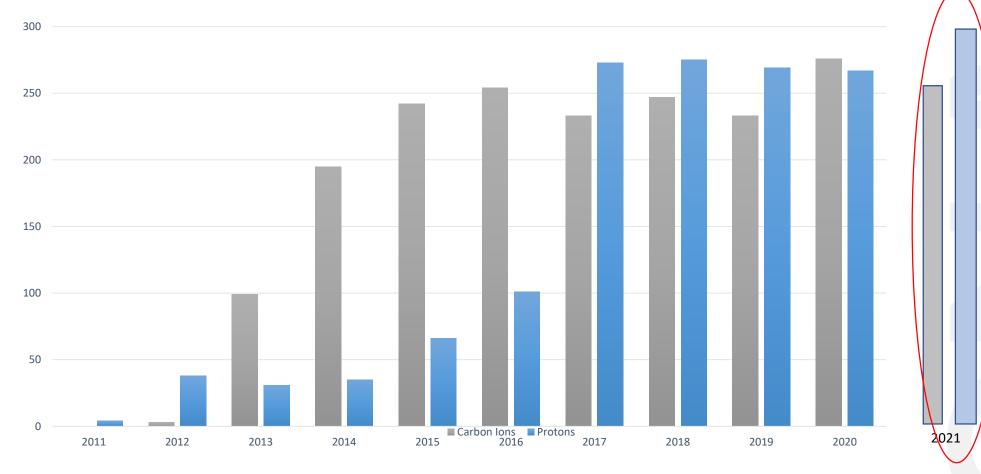
Masahiro et al Journal of Radiation Research 2018 Takahashi A et al. Int J Radiat Oncol Biol Phys. 2004

Carbon Ions: Radiobiology

- Difference in terms of molecular radiobiology
 - Clustered DNA lesions trigger different DNA damage repair signals strongly related to the immune response
 - Upregulation of PD-L1
 - Leading to cell death through different pathways (apoptosis, necrosis, mitotic catastrophe or senescence) → release of small molecules such as ATP, calreticulin, and HMGB1 that can trigger the immune response



Durante M et al Int J Radiat Oncol Biol Phys. 2020 Sato et al. Nat Commun. 2017


Clinical activity in CNAO: a handful of numbers

Particella	N.
Protoni	1673
Ioni Carbonio	1991
Ioni C./Protoni	26
Totale	3690

Clinical activity in CNAO: a handful of numbers

Particles treatments distribution through the years

15/12/2021

Since 2011, 3690 pts treated

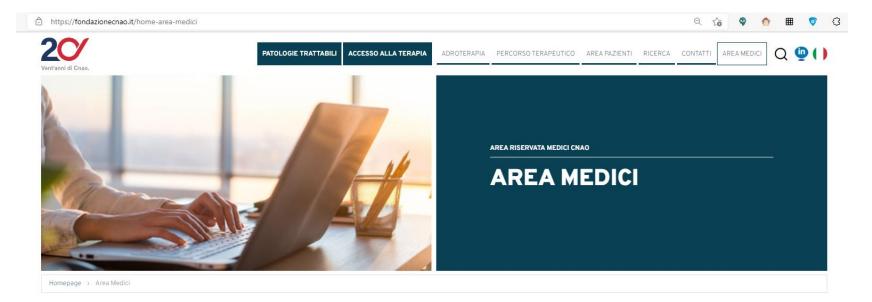
Il progetto, che prende il nome di "CNAORAL-NET", è promosso da **CNAO**, Centro Nazionale di Adroterapia Oncologica in collaborazione con **AIRO Lombardia** (Associazione Italiana Radioterapia e Oncologia clinica) e **CODRAL** (Collegio dei Direttori delle Radioterapie Lombarde)

Pavia, 10 giugno 2021 – Una piattaforma online dedicata ai radioterapisti che operano negli ospedali della Lombardia che consente di condividere informazioni sui casi clinici e di potersi confrontare, attraverso un sistema di video-consulto, con i medici esperti in adroterapia, forma avanzata di radioterapia indicata per i tumori non operabili o resistenti ai raggi X: è stata creata dal CNAO, Centro Nazionale di Adroterapia Oncologica in collaborazione con **AIRO Lombardia** (Associazione Italiana Radioterapia e Oncologia clinica) e **CODRAL** (Collegio dei Direttori delle Radioterapie Lombarde).

La piattaforma, che prende il nome di "Network CNAO e RAdioterapie Lombarde – CNAORAL-NET", ha l'obiettivo di agevolare il confronto tra i radioterapisti e di **favorire l'accesso dei pazienti oncologici alle terapie più avanzate** e più indicate.

Attraverso la piattaforma telematica CNAORAL-NET, che è già attiva ed è disponibile su <u>https://fondazionecnao.it/home-area-medici</u>, i radioterapisti oncologi che operano in Lombardia, potranno valutare, per esempio, insieme ai radioterapisti oncologi di CNAO quando è opportuno inserire nei percorsi di cura l'adroterapia, tecnica radioterapica disponibile in 5 Paesi al mondo (Italia, Germania, Austria, Cina, Giappone) e coperta dal **Servizio Sanitario Nazionale** che prevede l'utilizzo di protoni e ioni carbonio, particelle pesanti in grado di colpire con forza radiobiologica e precisione i tumori difficili da trattare. Ogni anno sono oltre **174.000 i pazienti oncologici trattati in Italia con radioterapia**. Di questi, 32.000 sono trattati nei 35 centri radioterapici presenti in Lombardia, dove operano 340 radioterapisti oncologi.

Ester Orlandi, direttore del Dipartimento clinico del CNAO, osserva: "Il confronto costante tra oncologi radioterapisti è essenziale per individuare per ogni paziente il percorso di cura più indicato che tenga conto delle evidenze scientifiche e delle possibilità tecnologiche della radioterapia. L'obiettivo finale è una radioterapia personalizzata e di precisione".

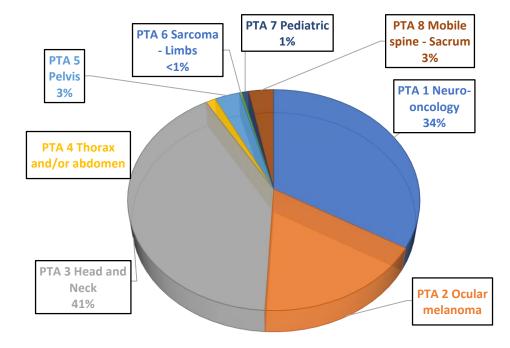

Sandro Tonoli, presidente di AIRO Lombardia: "Il progetto CNAORAL-NET permette la presentazione da parte dell'oncologo radioterapista di casi, individuati dai gruppi multidisciplinari operanti nei vari centri lombardi e candidati a radioterapia, che potrebbero avere un beneficio clinico dall'utilizzo della adroterapia per le caratteristiche cliniche (sede, radiosensibilità, istologia, rapporto con organi critici). Questa possibilità offre l'appropriato accesso a un ulteriore strumento terapeutico, che si affianca a quelli già disponibili e utilizzati quotidianamente nei centri radioterapici, nel trattamento dei tumori del distretto capo-collo".

Mauro Filippo Palazzi, presidente del CODRAL: "*Questo progetto consentirà fra l'altro di semplificare ed ottimizzare il percorso dei tanti pazienti potenzialmente candidati ad un trattamento radioterapico complesso: lunghe ricerche e viaggi anche impegnativi di pazienti e familiari potranno essere sostituiti da un confronto diretto fra gli specialisti curanti locali e gli specialisti di CNAO, per una migliore gestione complessiva delle persone ammalate e un migliore utilizzo di questa preziosa risorsa terapeutica"*.

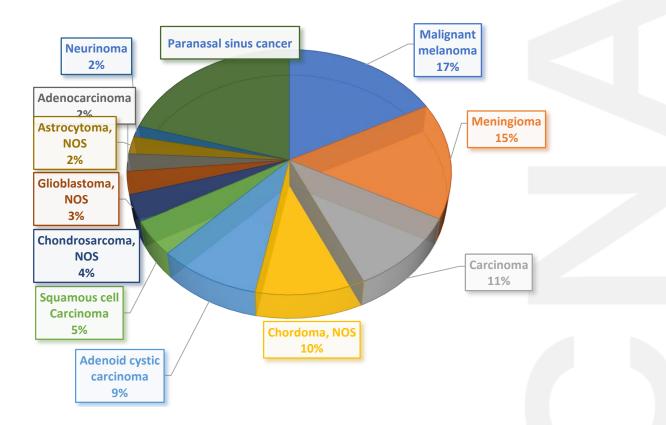
Network

CNAO e RAdioterapie Lombarde CNAORAL – NET

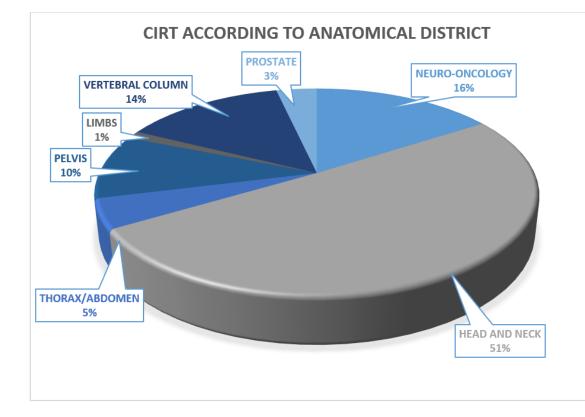
15/12/2021

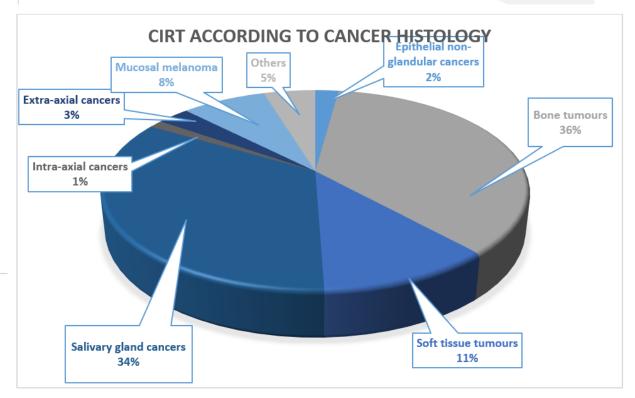


Questa è una sezione dedicata ai medici in cui è possibile trovare informazioni scientifiche in merito al trattamento con adroterapia, oltre che inviare casi clinici utilizzando la chat per richiedere una valutazione del caso.

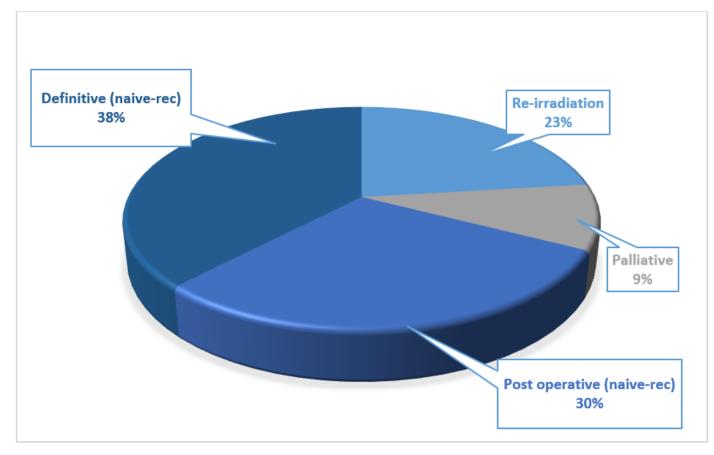

15/12/2021

PBT treatments



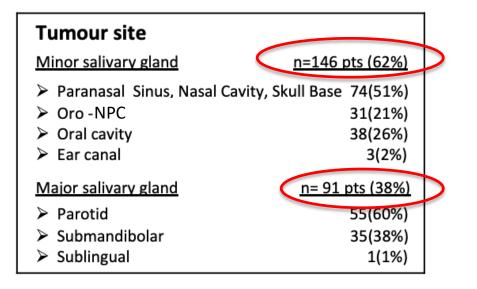

PBT according to anatomical district

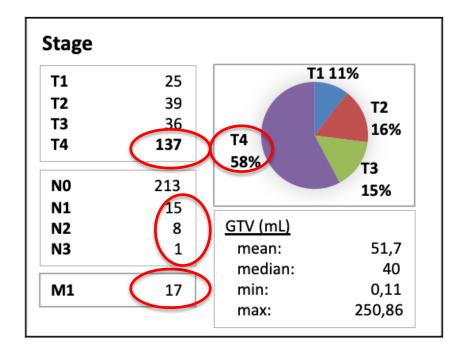
PBT according to tumor histology


CIRT treatments

15/12/2021

Setting of CIRT/PT treatments


27% concurrent CT(with PT)


15/12/2021

Adenoid cystic (ACC) carcinoma of the head and neck treatment @ CNAO

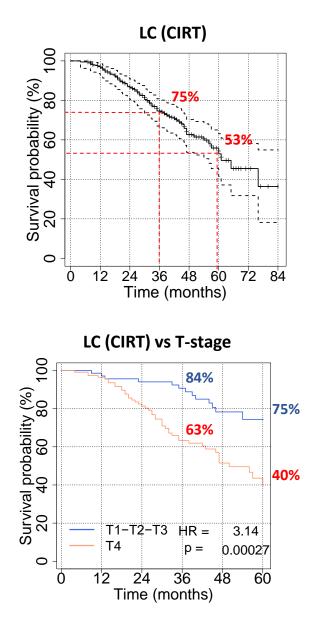
Patient Characteristics

- January 2013 and January 2020
- 237 patients
 F: 128; M: 109
- Median age: 54 years (range: 20 88)
- Median KPS: 100 (range: 70-100)

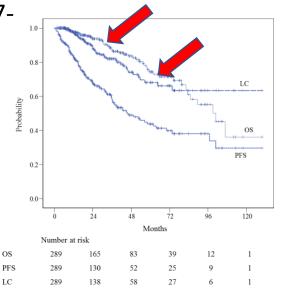
Disease status

- Primary diagnosis: 212 pts (89%)
- Local recurrence: 25 pts (11%)

Treatment Characteristics


- Settings:
 - Definitive RT: 72/237 pts (30%)
 - Postoperative RT: 165/237 pts (70%)
 - Histological report:
 Residual disease on post-op MRI:

 R0: 10 pts (6%)
 0/10 pts


 R1: 118 pts (72%)
 61/118 pts

 R2: 37 pts (22%)
 37/37 pts
- Beam quality and fractionations:
 - CIRT 68.8 Gy[RBE] in 16 fr, 4.3 Gy[RBE]/fr: 155 pts (65%)
 - CIRT 65.6 Gy[RBE] in 16 fr, 4.1 Gy[RBE]/fr: 29 pts (12%)
 - PT 59.92-72 Gy[RBE] in 28-35 fr: 53 pts (22%)

Outcome

- CIRT (n=184)
- Median FUP: 45 months (range 7-
- 90)

289 ACC pts (CIRT) Sulaiman et al, 2018

 prognostic factors (MVA):
 GTV, T stage, tumor site, number of Surgeries, marginal status

Toxicity of CIRT for ACC of the head and neck @ CNAO

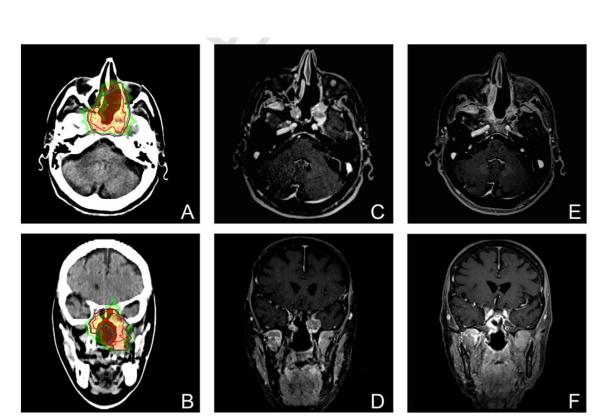
Toxicity

CIRT (n=184)	ACUTE	LATE
G0	1 (1%)	21 (11%)
G1	48 (26%)	43 (23%)
G2	94 (51%)	88 (48%)
G3	41 (22%)	28 (15%)
G4	/	3 (2%)
G5	/	1 (1%)

٠

٠

- G3 acute toxicity:
 - Mucositis: 37 patients
 - Erytema: 4 patients
 - Hearing impairment: 2 patients
 - Bleeding, protective tracheotomy: 1 patient
- G3 late toxicity:
 - RN (bone/sof tissue): 13 patients
 - Visual impairment: 5 patients
 - > Hearing impairment: 6 patients
 - Neurophaty: 4 patients
 - Brain RN: 1 patient
 - Mucositis: 1 patient


- G4 late toxicity:
 - Epidural abscess: 1 patient
 - RN soft tissue, vascular toxicity:1 patient
 - RN soft tissue: 1 patient
- G5 late toxicity:
- RN soft tissue, vascular toxicity: 1 patient

[289 ACC pts (CIRT)]

Type of toxicity	Grade 3	Grade 4	Grade 5
Acute events			
Mucositis	84	0	0
Dermatitis	11	0	0
Late events			
Osteonecrosis of the jaw bone	16	<u> </u>	0
Visual impairment	6	9	0
Optic neuropathy	0	1	0
Cataract	5	0	0
Glaucoma	1	2	0
Retinopathy	0	2 5	0
Retinal vein occlusion	0	1	0
Brain injury	5	1	-
Hemorrhage	2	2	2
Mucositis	2	1	~
Others	1		0

CIRT reirradiation for recurrent salivary gland tumors @ CNAO

Patients and treatment characteristics	N (%)
Sex	
Male	27 (53)
Female	24 (47)
Prior surgery	
None	1(2)
One	10 (19.6)
Two	23 (45.1)
Three	10 (19.6)
Four	7 (11.7)
Histology	
Adenoid cystic carcinoma	38 (74.5)
Mucoepidermoid carcinoma	6 (11.8)
Myoepithelial carcinoma	3 (5.8)
Carcinoma ex pleomorphic adenoma	2 (3.9)
Mucinous adenocarcinoma Ductal adenocarcinoma	1 (2)
Site of retreatment	1 (2)
Parotid	17 (33.3)
Nasal cavity	5 (9.8)
Nasopharynx	3 (5.9)
Mandible	2 (3.9)
Maxillary sinus	5 (9.8)
Hard palate	3 (5.9)
Ethmoid	3 (5.9)
Para-pharyngeal space	3 (5.9)
Oropharynx	1(2)
Lacrimal gland	2 (3.9)
Soft palate	1(2)
Tongue	1(2)
Retromolar trigone	1 (2)
Pterygopalatine fossa	4 (7.8)
Reirradiation stage	
rcT2	1(2)
rcT3	5 (9.8)
rcT4a	26 (51)
rcT4b	19 (37.2)
rcN0	46 (90.2)
rcN1	4 (7.8)
rcN2b	1 (2)
M0	45 (88.2)
M1	6(11.8)
Prior RT courses	
One	46 (90.1)
Two	5 (9.9)
CIKI fractionation scheme	
3.0 Gy [RBE]/fr × 15 fr	1(2)
3.0 Gy [RBE]/fr × 16 fr	3 (5.8)
3.0 Gy [RBE]/fr × 18 fr	10 (19.6)
3.0 Gy [RBE]/fr × 19 fr 2.0 Gy [RBE]/fr × 20 fr	1 (2)
3.0 Gy [RBE]/fr \times 20 fr 3.0 Gy [RBE]/fr \sim 22 fr	15 (29.4)
3.0 Gy [RBE]/fr × 22 fr 3.75 Gy [RBE]/fr × 16 fr	2 (3.9) 1 (2)
4.0 Gy [RBE]/fr \times 14 fr	1(2)
4.0 Gy [RBE]/fr × 15 fr	6 (11.7)
4.0 Gy [RBE]/fr \times 16 fr	1(2)
4.3 Gy [RBE]/fr \times 16 fr	9 (17.6)
5.0 Gy [RBE]/fr \times 12 fr	1 (2)
and a framellar to an er	- ()

Vischioni, Radiother Oncol, 2020

CIRT reirradiation for recurrent salivary gland tumors @ CNAO

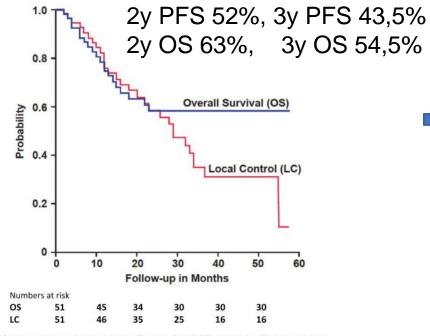
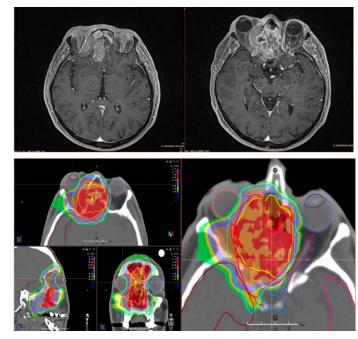
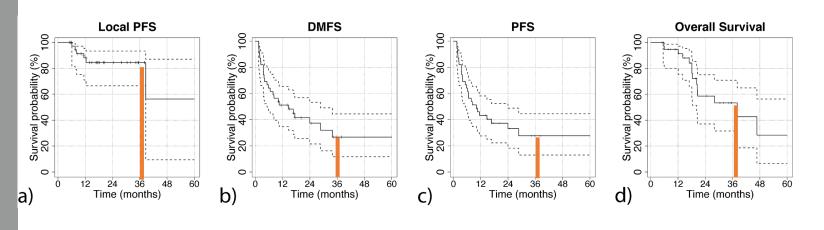


Fig. 2. Local control (LC) and overall survival (OS) following reirradiation with CIRT in a series of inoperable recurrent salivary gland tumors treated at CNAO.

Table 3			
Multivariate analyses for	prognostic value of majo	r patients and treat	ment characteristics.


Model covariates		OS	PFS	LC
Gross tumor volume	HR	4.831	5.597	6.683
$(<62 \text{ cc vs} \geq 62 \text{ cc})$	(95% CI)	1.645-14.187	2.027-15.455	2.144-20.834
	P-value	0.004	0.0009	0.001
Nodal disease	HR	0.288	0.445	0.390
(N0 vs N+)	(95% CI)	0.031-2.690	0.110-1.793	0.088-1.741
	P-value	0.27	0.25	0.22
Re-radiation interval	HR	0.836	0.954	0.998
	(95% CI)	0.709-0.987	0.831-1.095	0.863-1.153
	P-value	0.03	0.50	0.98
Sex	HR	4.325	1.808	1.457
	(95% CI)	1.250-14.959	0.799-4.091	0.622-3.412
	P-value	0.02	0.16	0.39
M1 disease before CIRT	HR	0.156	0.740	0.863
	(95% CI)	0.018-1.361	0.245-2.238	0.282-2.640
	P-value	0.09	0.59	0.80
Age	HR	1.387	1.146	1.196
(<60 years vs \geq 62 years)	(95% CI)	0.441-4.363	0.499-2.633	0.511-2.799
	P-value	0.58	0.75	0.68
CIRT radiation dose	HR	0.986	0.956	0.943
	(95% CI)	0.909-1.069	0.898-1.017	0.882-1.008
	P-value	0.73	0.16	0.09

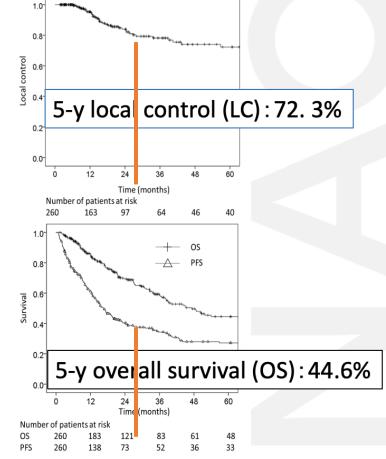
Author	Particle	No patients (Histology)	Median FU	Outcomes	G3+ toxicities
Jensen et al. 2015	Carbon ions	52 (salivary glands)	14 months	1y LC 70%, 2y LC 47% 1y OS 81%, 2y OS 63%	No acute Late G3 = 5,8% G4 = 3,8% ica blow-out
Hayashi et al. 2019	Carbon ions	48 (miscellaneous)	27,8 months	2y LC 40,5% 2y PFS 29,4% 2y OS 59,6%	Late ≥ G3 in 37.5% 1 pt G5
Gao et al. 2019	Carbon ions	141 (miscellaneous)	14,7 months	1y LPFS 84,9% 1y OS 95,9%	≥ G3 in 7,1% (4 late G5 events)
CNAO	Carbon ions	52 (salivary glands)	23 months	2y PFS 52%, 3y PFS 43,5% 2y OS 63%, 3y OS 54,5%	Acute G3 = 3,9% Late G3 = 17,5% No G4


Vischioni et al, 2020

CIRT for locally advanced head and neck malignant mucosal melanoma @ CNAO

- 40 pts, median age70 years (range 39-87)
- Tumor (T) site: nasal cavity/paranasal sinuses/other in 77.5%/12.5%/10%
- T status: naïve/recurrent in 77,5%/22,5% of pts
- T stage: T3/T4 in 17(42,5%)/23(57,5%) pts
- 28 (70%) pts after surgery, 12 (30%) with exclusive CIRT
- CIRT total dose: 65.6 Gy(RBE) or 68.8 Gy(RBE) (16 fractions, 4 fractions/week)
- 18 pts (44%) received immunotherapy after CIRT
- Median follow-up (FU) time was 18 mo (range 5-81 mo)

CIRT for locally advanced head and neck malignant mucosal melanoma @ CNAO


3 ys LPFS 84.5%

3ys DMFS 26.7%

3 ys PFS 27.6%

3 ys	OS	53	.3%
------	----	----	-----

	Т3	T4	Immuno alone
lmm. no	10 (100%)	11 (19.2%)	21 (57.1%)
lmm. si	7 (71.4%)	11 (72.7%)	18 (72.2%)
T stage alone	17 (88.2%)	22 (46.5%)	39 (64.1%)

Koto M, et al. Int J Radiat Oncol Biol Phys. (2017)

NO immunotherapy after CIRT: T3 and T4 stages maintain significant differences in 3y-OS (100% vs 19.2%) Immunotherapy after CIRT: T3 and T4 stages reached similar OS rates (71.4% vs 72.7%).

MUTATIONAL STATUS

Mutational status: BRAF/NRAS/c-KIT wild type: 23 (57,5%) BRAF mutated: 1 (2,5%) NRAS mutated: 3 (7,5%) c-KIT mutated: 1 (2,5%) Unknown: 12 (30%)

Subanalysis on 28 pts carrying the mutational status information

Mut	T status	Complete	Local	Dist	OS	Τ4	Immuno	4.3 Gy	GTV	Average
	Recurrent	Resp @	PD	PD			(yes)		vol	FU time
		1FU								
No	17.4%	30.4%	91.3%	44.8%	74%	60.9%	56.5%	56.5%	35 cc	22.6
										mos
Vee	C00/	00/	CO 0/	200/	0.00/	CO 0/	400/	CO 0/		12.0
Yes	60%	0%	60%	20%	80%	60%	40%	60%	44.5 cc	13.6
										mos

Patients with BRAF/NRAS/cKIT wild-type status showed a trend towards a better LPFS versus patients with BRAF/NRAS/cKIT mutations (HR=4.0 and p=0.13).

Skull base chordoma @ CNAO

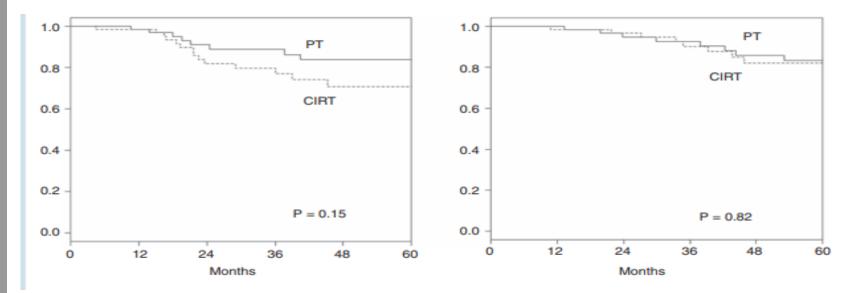
- November 2011- December 2018
- CIRT: 65 pts (unfavourable)
- PT:70 pts
- CIRT dose: 70.4 Gy[RBE]/ 4.4Gy[RBE] FS
- PT dose 74 Gy[RBE]/ 2 Gy[RBE] FS

	Total n (%) 135 Patients	CIRT Cohort n (%) 65 Patients	PT Cohort n (%) 70 Patients	<i>P</i> -val
KPS				0.8
≤80	22 (16)	11 (17)	11 (16)	
90–100	113 (84)	54 (83)	59 (84)	
Sex				0.3
Male	82 (61)	42 (65)	40 (57)	
Female	53 (39)	23 (35)	30 (43)	
Age, y, median (range)	57 (13-81)	58 (13-81)	53 (17-81)	0.1
Treatment				0.0
Primary	107 (79)	46 (71)	61 (87)	
Recurrent	28 (21)	19 (29)	9 (13)	
Aim of the treatment				0.1
Postoperative	130 (96)	61 (94)	69 (99)	
Exclusive	5 (4)	4 (6)	1 (1)	
Resection status				<0.0
Complete	19 (14)	0 (0)	19 (27)	
Incomplete	115 (85)	64 (98)	51 (73)	
Only biopsy	1 (1)	1 (2)	0 (0)	
Surgical technique				0.1
Endoscopic endonasal	112 (83)	55 (84)	57 (82)	
Other approach (transcranial)	13 (10)	5 (8)	8 (11)	
Not known	10 (7)	5 (8)	5 (7)	
Surgery (n)				0.2
1	77 (57)	34 (52)	43 (61)	
>1	58 (43)	31 (48)	27 (39)	
Brainstem abutment and/or compression				0.6
Y	31 (23)	14 (22)	17 (25)	
N	103 (77)	51 (78)	52 (75)	
Not evaluated *	1	0 (0)	1	
Optic pathway abutment and/or compression				0.5
Y	11 (8)	58 (89)	64 (94)	
N	123 (92)	7 (11)	4 (6)	
Not evaluated *	1	0 (0)	1	
Visual defect				0.0
Y	24 (18)	17 (26)	7 (10)	
N	110 (81)	48 (74)	62 (89)	
Not evaluated	1 (1)	0 (0)	1 (1)	
Diplopia				0.5
Y	55 (41)	28 (43)	27 (33)	
N	80 (59)	37 (57)	47 (67)	
Hearing impairment				0.5
Y	62 (46)	28 (43)	34 (49)	2.0
N	73 (54)	37 (57)	36 (51)	
Pituitary dysfunction				0.3
N	112 (82.9)	51 (78.4)	61 (87.1)	
Y (1 hormonal deficit)	10 (7.4)	7 (10.8)	3 (4.3)	
Y (>1 hormonal deficits)	13 (9.6)	7 (10.8)	6 (8.6)	
Cranial nerve deficit		- ,,		0.0
Y	58 (43)	35 (54)	23 (33)	0.0
Y N	77 (57)	30 (46)	47 (67)	
GTV, cm ³ , median (range)	7 (0-99.3)	13 (0.4–87.4)	3.5 (0-99.3)	0.0
Dose, median (range)	, (0-00.0)	70.4 (70.4-70.4)	3.5 (0-99.3) 74 (72-74)	0.0

15/12/2021

Iannalfi A, Neuro-Oncology 2020

Outcome data on chordoma treatment @ CNAO


LOCAL CONTROL

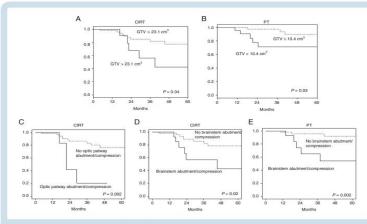
Protons : 3 ys 89% ; 5 yrs 84 % Carbon ions: 3 ys 77 % ; 5 yrs 71 %

OVERALL SURVIVAL

Protons : 3 ys 89% ; 5 yrs 84 %

Carbon ions: 3 ys 90 % ; 5 yrs 82 %

Toxicity


Table 3 Late toxicity profile for the entire cohort of patients (PT + CIRT)

		Patients	%	
High grade late toxicity	No	119	88	
	Yes	16	12	
	G3	13	10	٦
	G4	3	2	
CTCAE high grade late toxicity	No	119	88	
	Ear	8	6	
	G3	7	1	
	G4	1	3	
	Endocrine	1	2	
	G3	1		
	G4	0		
	Eye	4		
	G3	2		
	G4	2		
	Nervous system disorders	3		
	G3	3		
	G4	0		

Abbreviations: PT: proton therapy, CIRT: carbon ion radiotherapy, CTCAE: Common Terminology Criteria for Adverse Events, G: grading.

Prognostic factors for LC : gross tumor volume (GTV),

optic pathways, and/or brainstem compression and dose coverage

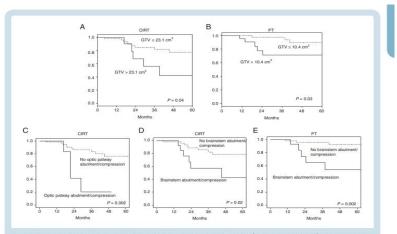


Fig. 2 Kaplan-Meier curves of local control (LC) probability after CIRT in case of GTV ≤23.1 cm² versus volume >23.1 cm² (A) and PT in case of GTV ≤10.4 cm² versus volume >10.4 cm² (B) and after CIRT in case optic pathway abutment/compression (C) or brainstem abutment/compression (D) and after PT in case of brainstem abutment/compression (D).

Fig. 2 Kaplan-Meier curves of local control (LC) probability after CIRT in case of GTV s23.1 cm³ versus volume >23.1 cm³ (A) and PT in case of GTV s10.4 cm³ versus volume >10.4 cm³ (B) and after CIRT in case optic pathway abutment/compression (C) or brainstem abutment/compression (D) and after PT in case of brainstem abutment/compression (E).

Study (Istitution)	Radiation Type	RT Dose (GyRBE)	Patients (number)	Follow-up Months (median)	GTV	LC (%)	OS (%)
Hug, 1999; LLMUC⁴	Ph + P	TD 71.9 median (66.6–79.2, range) Dfp: 1.8	33	32.2	9%: 0 to ≤15 mL 12%: >15 to ≤25 mL 79%: >25 mL	3-у: 67 5-у: 59	3-y: 87 5-y: 79
Munzenrider, 1999; HCL-MGH ¹⁰	Ph + P	TD: 66–83 range Dpf: 1.8–1.92	169	41	NR	5-y: 73 10-y: 54	5-y: 80 10-y: 54
Noel, 2005; CPO ³⁰	Ph + P	TD: 67 median (60–71, range) Dpf: 1,8-2	100 (1993–2002)	31	23 cm ³ (median)	4-y: 53	4-y: 90
Mizoe, 2009 (NIRS) ³¹	С	TD: 48–60.8 range Dpf: 3–3.8	33	53 (mean)	NR	5-y: 85 10-y: 64	5-y: 88 10-y: 67
Uhl, 2014 (GSI) ⁹	С	TD: 60 median (54–70, range) Dpf: 3	155	38	NR	3-у: 82 5-у: 72 10-у: 54	3-y: 95 5-y: 85 10-y: 75
Weber, 2016 (PSI) ¹¹	Ρ	TD: 72.5 mean Dpf: 1,8-2	151	50 (mean)	35.4 cm ³ (mean)	5-y: 7.,8 7-y: 70.9	7-y: 72.9
Fung, 2018 (CPO) ¹²	Ph + P	TD 68.4–73.8 range Dpf: 1.8	106 (2006–2012)	61	25 cm³ (mean)	4-y: 78.3 5-y: 75.1	4-y: 90.2 5-y: 88.3
Present study, CNAO	P or C	P:TD: 74 median (72–74, range) Dpf: 1,8-2 C: TD: 70,4 Dpf: 4,4	135 70 P 65 C	44	7 cm ³ (median) P: 3.5 cm ³ (median) C: 12.9 cm ³ (median)	P: 3-y: 89 5-y: 84 C: 3-y: 77 5-y: 71	P: 3-y: 93 5-y: 83 C: 3-y: 90 5-y: 82

Iannalfi et al, 2020

Chack for updates

OPEN ACCESS

Edited by: Fabio Campodonico, Ente Ospedaliero Ospedali Galliera, Italy

frontiers

in Oncology

Reviewed by

Matteo Droghetti, University of Bologna, Italy Concetta Schiavone, Ente Ospedaliero Ospedali Galliera,

> *Correspondence: Stefania Volpe stefania.volpe@ieo.it

Italy

[†]Present address: Filippo Patti, Mixed-Beam Approach for High-Risk Prostate Cancer Carbon-Ion Boost Followed by Photon Intensity-Modulated Radiotherapy: Preliminary Results of Phase II Trial AIRC-IG-14300

Giulia Marvaso^{1,2‡}, Barbara Vischioni^{3‡}, Matteo Pepa^{1‡}, Mattia Zaffaroni¹, Stefania Volpe^{1,2*}, Filippo Patti^{1,3*}, Federica Bellerba⁴, Sara Gandini⁴, Stefania Comi⁵, Giulia Corrao^{1,2}, Dario Zerini¹, Matteo Augugliaro¹, Cristiana Fodor¹, Stefania Russo³, Silvia Molinelli³, Mario Ciocca³, Rosalinda Ricotti³, Francesca Valvo³, Tommaso Giandini⁶, Barbara Avuzzi⁷, Riccardo Valdagni^{2,7}, Ottavio De Cobelli^{2,8}, Federica Cattani⁵, Ester Orlandi³, Barbara Alicja Jereczek-Fossa^{1,2§}

ORIGINAL RESEARCH published: 28 September 2021 doi: 10.3389/fonc.2021.740661

Dosimetric Impact of Inter-Fraction Anatomical Changes in Carbon Ion Boost Treatment for High-Risk Prostate Cancer (AIRC IG 14300)

OPEN ACCESS

Thomas Tessonnier, Heidelberg University Hospital, Germany **Reviewed by:**

Reviewed by: Stefan Koerber, Heidelberg University Hospital, Germany Hirokazu Makishima,

Stefania Russo^{1+†}, Rosalinda Ricotti^{2+†}, Silvia Molinelli¹, Filippo Patti^{3,4}, Amelia Barcellini³, Edoardo Mastella¹, Andrea Pella², Chiara Paganelli⁵, Giulia Marvaso^{4,6}, Matteo Pepa⁴, Stefania Comi⁷, Mattia Zaffaroni⁴, Barbara Avuzzi⁸, Tommaso Giandini⁹, Emanuele Pignoli⁹, Riccardo Valdagni^{6,7}, Guido Baroni^{2,5}, Federica Cattani⁷, Mario Ciocca¹, Barbara Alicja Jereczek-Fossa^{4,6}, Ester Orlandi³, Roberto Orecchia^{10‡} and Barbara Vischioni^{3+‡}

15/12/2021

NTCP model based strategy for NPC

AIM

To investigate a method to estimate the proportion of NPC patients which may benefit from PT

MATERIALS AND METHODS

Retrospective comparative bi-institutional study on a cohort of 50 non metastatic NPC patients treated between 2016 and 2019 with curative VMAT with or without chemotherapy at Fondazione IRCCS Istituto Nazionale dei Tumori.

IMPT plan was optimized for each patient

In silico planning comparison (with rotational gantry)

We applied the NTCP model-based selection

To identify a comprehensive toxicity score (CTS)

Submitted

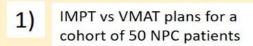
MATERIALS AND METHODS

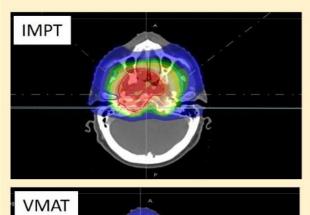
- 7 of 16 NTCP models identified based on clinical relevance
- ΔNTCPx-p between VMAT and IMPT
- Stratified for tumor staging
- Thresholds estabilished based on the National Indication Protocol for Particle Therapy (NIPP):

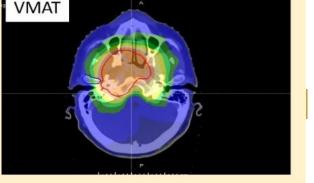
10% for $G \ge 2$

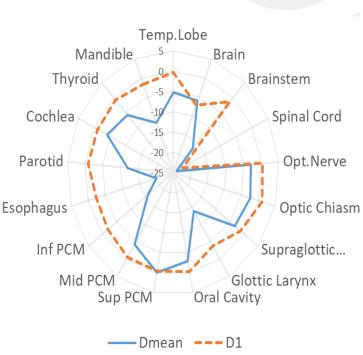
5% for G≥ 3

^15 % for xerostomia and mucositis (G3) for the relatively lower detrimental impact on the QOL


^35% for the composite threshold (assuming an ideal concomitant 5% variation for each of the 7 models)


NTCP Model		NTCP filter thresholds
ORGAN	Endpoint (time post-RT)	
Brain	Necrosis > grade II (2 yrs)	10%
Optic Pathways	RadiationInducedOcularToxicity(RION)(>3 mths)	5%
Optic Pathways	Grade IV Visual Acuity Loss (>3 mths)	5%
Oral Cavity	Mucositis (8 wks)	15%
Superior PCM	Grade II-IV dysphagia (6 mths)	5%
Parotid	Moderate to severe xerostomia (6 mths)	15%
ТМЈ	Trismus (>3 mths)	10%


RESULTS


In silico dosimetric planning comparison (with gantry)

- ✓ PTV_{HD} D_{99%} and D_{1%} showed no significant difference
- ✓ no significant difference in HI values
- ✓ CI was lower for IMPT plans
- ✓ IMPT improved OARs sparing in the lowto-middle dose region for OARs close to the target while D₁ for OARs located few centimeters far from the PTV
- ✓ IMPT allowed a reduction of 45% of the integral dose

Role of IMRT/VMAT-Based Dose and Volume Parameters in Predicting 5-Year Local Control and Survival in Nasopharyngeal Cancer Patients

Nicola Alessandro Iacovelli^{1†}, Alessandro Cicchetti^{2†}, Anna Cavallo^{3*}, Salvatore Alfieri⁴, Laura Locati⁺, Eliana Ivaldi⁺, Rossana Ingargiola⁺, Domenico A. Romanello⁺, Paolo Bossi⁴, Stefano Cavalieri⁴, Chiara Tenconi³, Silvia Meroni³, Giuseppina Calares⁶, Marco Guzzo⁶, Cesare Piazza⁶, Lisa Licitra^{4,7}, Emanuele Pignoli³, Fallai Carlo⁺ and Ester Orlandi^{1,8}

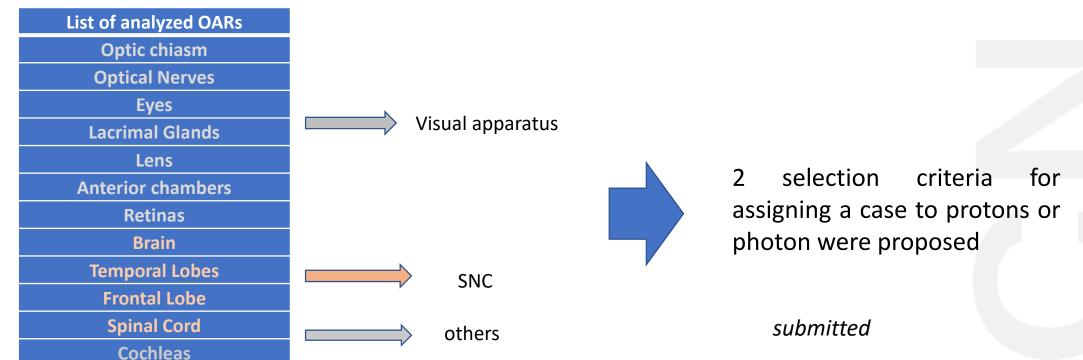
RESULTS

3)

MBS

NTCP model-based selection

- for a single endpoint
 - $\Delta NTCP_{x-p} \ge 15-5\%^*$


- for cumulative $\Sigma \Delta NTCP_{x-p} \ge 35\%$

- pass at least on 1 condition
- only on 7 clinical most relevant models

40% of the analyzed patients resulted eligible for proton therapy, with a greater advantage for T3-T4 patients.

NTCP model based patient selection approach for proton therapy in sinonasal cancer patients with orbital invasion

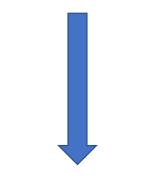
- Patient cohort: 22 SNUC
- Rationale: VMAT photon RT vs IMPT in silico study based on NTCP and DVHs statistics
- Both are advanced and up to date RT techniques
- All plans were optimised in CNAO with Raystation TPS
- Selected clinical endpoints were analyzed in terms of validated NTCP models and DVHs. Following OARs were investigated :

First criterion (NTCP models based)

if, for at least three of all investigated side-effects, i_a) Δ NTCP exceeded a threshold of 20% for intermediate toxicities or i_b) 3% for a single severe toxicities

Enpoints were classified as

severe or intermediate


Patient is assigned to protons

	Endpoint	NTCP model	OAR		
\rightarrow	Blindness 5 years post-RT Burman et al. 1991 (Severe)	$NTCP = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} exp\left(\frac{-u^2}{2}\right) du,$ $t = \frac{gEUD - TD_{50}}{m * TD_{50}}$	Optic Chiasm Left/Right Optical Nerve		
	Brain necrosis 5 years post-RT Bender et al. 2012 (Severe)	$NTCP = \left(1 + \left(\frac{D_{50}}{EQD_2}\right)^{4\gamma}\right)^{-1}$	Brainstem and Brain-CTV		
	Ocular Toxicity grade ≥ 2 Acute Batth et al. 2013 (Intermediate)	$NTCP = (1 + e^{-\beta_0 - \beta_1 * D_{max}})^{-1}$	Left/Right Lacrimal gland		
stigated eded a nediate	Temporal Lobe injury 5 years post-RT Kong et al. 2016 (Severe)	$NTCP = \left(1 + e^{-\beta_0 - \beta_1 * D_{max}}\right)^{-1}$	Left/Right/Frontal Lobes		
severe	Tinnitus 1-2 years post-RT Lee et al. 2015 (Intermediate)	$NTCP = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} exp\left(\frac{-u^2}{2}\right) du,$ $t = \frac{gEUD - TD_{50}}{m * TD_{50}}$	Left/Right Cochlea		
	Cataract requiring intervention 5 years post-RT Burman et al. 1991 (Intermediate)	$NTCP = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} exp\left(\frac{-u^2}{2}\right) du,$ $t = \frac{gEUD - TD_{50}}{m * TD_{50}}$	Left/Right Len		
	Dry Eye Syndrome Bahandare et al (Severe)	$NTCP = \frac{e^{\left(4\gamma\left(\frac{D}{D_{50}}-1\right)\right)}}{1+e^{\left(4\gamma\left(\frac{D}{D_{50}}-1\right)\right)}}$	Left/Right Lacrimal gland		
ons	G2 necrosys Nyiazi et al 2020 (Intermediate)	$NTCP = \left(1 + \frac{39.5}{gEUD}^{10}\right)^{-1}$	Brain-CTV		

Second criterion (mixed, NTCP and DVH based)

$$TS = w_1 \sum_{j=0}^{4} \Delta NTCP^{severe}{}_j + w_2 \sum_{k=0}^{4} \Delta NTCP^{intermediate}{}_k + w_3 \sum_{r=0}^{m} \Delta DVH r$$

if an arbitrary mixed Δ NTCP/ Δ DVHs parameter called total score (TS) is higher than a threshold of 250

Patient is assigned to protons

 $W_{1,2 \text{ and } 3}$ are the weights given to the three factors.

 ΔDVH is equal to +1 if a certain DVH parameter (r) is < 20% for proton plans , equal to -1 if it is <20%, 0 otherwise.

If criterion 1 or 2 is fulfilled than patient is assigned to protons

Over 22 patients, 17 would benefit from protons (77,3%)

Interventional clinical studies (Promoter/PI: CNAO)

15/12/2021

•		-	•		
Title	Study phase	Setting	First endpoint	State	N. of patients enrolled
CNAO 35/2017C: PIOPPO Preoperative chemotherapy and carbon ions therapy for treatment of borderline resectable pancreatic adenocarcinoma: a prospective, phase II, multicentre, single-arm study CNAO 37-2019: 4D-MRI CIRT MRI-guidance for organ motion management in carbon ion treatments of abdominal tumours		Multicentric Monocentric	PFS organ motion quantification (MRI)	Recruiting Recruiting	12
CNAO 41 2020C: Phase II clinical study on the re-irradiation of lateral pelvic recurrences of gynecological malignancies (CYCLOPS)		Monocentric	LC	Recruiting	2
Protect trial	-				
EUROCAN					
CNAO OSS 25 2021 CNAO Registry Trial (Regal)					
 CNAO OSS 30 E²-RADIatE: EORTC-ESTRO RADiotherapy 2021 EORTC protocol 1811 	' InfrAstru	cTure for Euro	ope,		

Thank you very much for your attention and thank's a lot to all my clincal staff

RTTs & Nurses:

S.Tampellini

RTTs: M.Addonizio, F.Alabiso, L.Anemoni, G.Balsamo, L.Bianchi, Y.Bontà, M.Cadeo ,L.Calabrò, A.Ferent, F.Ferrari, F.Ferrario, G.Giovanelli, N.Giuliani, G.Leone, A.Mancin, L.Martini, I.Mascayano, G.Ordano, M.Piazzolla, D.Zambrino

NURSES: M.Delle Femine, A.Maioli, M.Manno, E.Silajdzija, C.Testa, L.Zollino

Radiation Oncologists: E.Orlandi

A.Barcellini, M.Bonora A.Chalaszczyk, A.Iannalfi R.Ingargiola, M.Fiore G.Riva, S.Ronchi B.Vischioni, V.Vitolo,

Medical Physicists: M.Ciocca

G.Magro, D. Maestri, ,A.Mirandola, S.Molinelli S.Russo,E.Rossi A.Vai

Medical Secretary Office:

V.Gasperi, E. Villani, V. Di Palma

BiomedicalEngineers:

G.Baroni

B.Tagaste, G.Fontana A.Pella, F.Bello R.Ricotti, L.Antonioli